
Specification-Driven Construction of Testbench
Checkers for RTL Models of Synchronous

Parallel-Pipeline Hardware
Alexander Kamkin

Institute for System Programming of the Russian Academy of Sciences
25, A. Solzhenitsyn Street, Moscow, 109004, Russia

E-mail: kamkin@ispras.ru

Abstract— In this paper a method for constructing testbench
checkers for RTL models of synchronous parallel-pipeline hard-
ware is considered. The method is based on description of control
flow graphs of the design’s operations and on formal specification
of the microoperations with the help of Hoare triples. The
method allows to specify and to automatically construct testbench
checkers for complex synchronous designs with control flow
branching, parallel starting operations, etc.

Keywords— simulation-based verification, formal specifica-
tion, testbench automation, assertions, co-simulation

I. I NTRODUCTION

Functional verification is one of the most difficult and labor-
intensive activities in hardware design process. According to
statistics, ensuring the functional correctness of hardware con-
sumes about 70% of the design efforts [1]. In this connection,
it is clear why semiconductor industry is so interested in
verification automation. The usage of automated approaches
reduces verification effort, shrinks time-to-market, and, simply,
saves money.

Two main approaches to functional verification of hardware
designs are based on formal and simulation techniques [2].
It is well known that formal methods are exhaustive, but do
not scale well, while simulation-based approaches are scal-
able, but are not exhaustive [3]. A reasonable compromise is
provided by so-called semi-formal methods combining formal
specifications and simulation.

In this work a semi-formal approach to testbench automa-
tion is suggested. A testbench is an environment used to verify
the design correctness via simulation. A typical testbench
has three key components: a stimulus generator, a response
checker, and a coverage tracker. The stimulus generator creates
input stimuli to the design under verification. The response
checker estimates the correctness of the design behavior. The
coverage tracker evaluates the test completeness.

The paper introduces the method of automated specification-
driven construction of response checkers. It is applicable to
synchronous parallel-pipeline designs with complex organiza-
tion. The method is based on description of the operations’
control flow and on formal specification of the microoperations
with the help of pre- and post-conditions. The work is a part of
research on testbench automation being done at Institute for

System Programming of the Russian Academy of Sciences
(ISPRAS) [4], [5].

The rest of the paper is organized as follows. Section II
describes the existing approaches to response checking in-
cluding self-checking tests, assertions, and co-simulation. In
Section III the suggested method is considered. This section
consists of four parts which describe how specifications look
like, how they are interpreted, how connection between speci-
fications and an implementation is organized, and, finally, how
testbench checkers are constructed. Section IV is a case study.
Section V concludes the paper.

II. RESPONSECHECKING APPROACHES

Modern digital hardware has rather complex organization
including pipelining, branching of control flow, etc. Our goal
is to automate construction of testbench checkers for such
kinds of designs. Nowadays, there are three basic ways used
for response checking: self-checking tests, assertions, and co-
simulation.

A. Self-Checking Tests

Self-checking tests are an approach to testbench organiza-
tion in which each stimulus (test case) is encoded with a pro-
cedure of checking for expected results [6]. In this approach,
each test case should perform response checking during and
at the end of the test. This has certain disadvantages. First, it
is hard to write test cases that make checks after sophisticated
test sequences. Second, test cases require maintenance during
the design process to keep up with the design changes. Finally,
the self-checking approach suffers from incomplete checking,
because each test case checks only few aspects of the design
behavior.

B. Assertions

Assertions are statements about a design’s intended behav-
ior, which must be verified [7]. In such approach, checks are
detached from stimuli and injected into RTL code (or written
in separate files). There is no need to have hand-written test
cases that check for specific results. Instead, automatic test
generation can be used for the design verification. Assertions
usually state the most critical or the most obvious properties.



Therefore assertion-based checking usually lacks for com-
pleteness. In the case of built-in assertions, it is impossible
to write checks until RTL model of the design is developed.

C. Co-Simulation

Co-simulation is a method of response checking in which
an independent executable model (reference model) is used
along with the target RTL description [6]. The two models are
co-simulated using the same test sequences and their results
(execution traces) are compared for equality. Every mismatch
is tracked down to discover which of the models is incorrect.
The usage of a reference model allows to generate tests
automatically. Making two models agree for all test sequences
is a difficult task, which in many cases is tantamount to writing
two RTL models.

D. Analysis

Let us analyze weaknesses of the approaches described
above. Self-checking tests lack for high level of automation
and for completeness of checking. Furthermore, they are hard
to maintain. Usage of assertions is a perfect solution for
checking a few numbers of properties, but is not suitable for
gap-free checking of complex designs. Co-simulation does not
suffer from incompleteness, but it requires development of a
detailed executable model to be used as a reference. This is a
labor-intensive and time-consuming task.

III. SUGGESTEDMETHOD

Our approach to response checking is based on cycle-
accurate formal specification of the design behavior. Each
operation of the design is described with the help of a
control flow graph having two types of nodes: control nodes
and operational nodes. Control nodes specify control flow
branching, creation of concurrent threads, etc. Operational
nodes describe one-cycle microoperations.

A. Specification of Design

State of the target design is formalized by a set of variables.
Among the variables, there are input and output parameters
of the operations. All predicates and functions mentioned
below are assumed to be defined over that set of variables.
Functionality of the design is described for separate operations.
Specification of an operation includes its precondition, which
restricts situations in which the operation is permitted to be
started. If the precondition does not hold, then the result of
the operation is unpredictable. In general case, execution of
an operation requires several cycles. A one-cycle part of an
operation is called amicrooperation.

Structure of an operation’s control flow is described by a
directed graph in which four kinds of nodes are admitted:
cond, fork, join (control nodes), andstage (operational
nodes). Obviously, control flow graphs must fulfill certain
requirements, e.g., out-degree of astage node is not greater
than one, acond node has exactly two outgoing edges,
which are marked bytrue and false, etc. An example of
an operation control flow graph is shown on Fig. 1. The graph

Fig. 1. An example of a control flow graph

on the picture consists of nine nodes: onecond, onefork, one
join, and sixstages including initial and final stages (start
andend).

If in-degree of a stage node is equal to zero, the node is
called initial . If out-degree is equal to zero, the node is called
final. An operation is allowed to have more than one initial
stage and more than one final stage. Eachcond node is sup-
plied with a predicate that represents a condition for choosing
control flow direction. Eachstage node is described by a
Hoare triple(microoperation contract) {P}C{Q}, whereP is
a precondition, C is acommand, andQ is apostcondition[8].
Semantics of a microoperation precondition is as follows. If
the precondition is not satisfied, it does not mean that the result
of the microoperation is unpredictable. It simply indicates that
the microoperation is interlocked (it will be unlocked, when
the precondition becomes true).

To define which operations can be started in parallel, a
notion of execution channelsis used. Each channel is asso-
ciated with a set of operations that can be executed via that
channel. A channel can handle only one operation per cycle.
Sets of operations for different channels are able to have a non-
empty intersection. Moreover, each channel supports an empty
operationnop. Operations associated with different execution
channels can be started simultaneously, if that combination of
operations is permitted.

Let k be a number of execution channels andX1, ..., Xk be
sets of operations associated with the channels. Possibility of
parallel starting ofk operations via different execution chan-
nels is defined by a Boolean functionsim : X1 × ...×Xk →
{true, false}. If the design has several execution channels,
one can define a generalized operation, which is a k-tuple
(x1, ..., xk) ∈ X1× ...×Xk such thatsim(x1, ..., xk) = true.
The precondition of the generalized operation is a conjunction
of the preconditions ofx1, ..., xk.

Specifications of the described type are calledcycle-
accurate contract specifications. Originally, they were intro-
duced for linear multi-cycle operations to specify pipelined
designs [9].

B. Interpretation of Specifications

Execution of a microoperation requires exactly one cycle.
Creation of parallel threads, checking branch condition and
making decision which branch should be taken are performed



Fig. 2. Cycle-by-cycle execution of the operation

instantly. To interpret specifications, aset of current stages
is used. At the beginning of simulation the set is empty.
On every cycle of simulation, a generalized operation with
satisfied precondition is applied to the design. All initial stages
of the operation are added into the set of current stages.
After that, the set of active stages is calculated among the
current stages. A stage is calledactive, if its preconditionP
is true; otherwise a stage is calledinterlocked. For each active
stage the corresponding commandC is executed. In theory,
the commands of the active stages are executed in parallel.
After execution, the postconditionsQ of the active stages are
checked. Then, the active stages are removed from the set of
current stages. If an active stage is not final, then its successive
stages are added into the set. A successor relation is defined
on the base of the control flow graphs. Given a stages and an
outgoing edgee, define the set of successive stages. Depending
on which type of the node the edge leads to, there are four
different cases:

• If e leads to astage node, then that stage is a successive
one.

• If e leads to acond node, then the branching condition
is estimated and choice among two alternative edges is
made. The same algorithm is applied recursively for the
chosen edge.

• If e leads to afork node, then the algorithm is applied
recursively for each outgoing edge of the node. Then, the
calculated sets of successive stages are unified.

• If e leads to ajoin node, then for each ingoing edge
the finishing condition of the corresponding thread is
checked. If all threads are finished, the algorithm is
applied recursively for the outgoing edge of the node;
otherwise the set of successive stages is empty (the node
will be processed again when another ingoing thread is
finished).

C. Connection between Specifications and Implementation

Fig. 2 shows cycle-by-cycle execution of the operation
presented on Fig. 1. It is assumed that the operation’s stages
have no interlocks (the preconditions of all microoperations

are identically true) and the branching conditioncond is not
satisfied. On the first cycle the initial stagestart is executed.
This stage is responsible for setting the operation’s strobe
and for assigning the input parameters of the operation to
the corresponding inputs of the design. The second cycle
is occupied bystage1. At the end of the second cycle the
branching conditioncond is estimated. Under our assumption,
the condition is false. During the third cycle two one-cycle
threadsstage3 and stage4 are executed in parallel. The last
cycle is taken by the final stageend.

To perform simulation-based verification, a testbench should
connect specifications and an implementation. For this pur-
pose, one should develop special testbench components: stage
drivers, stage monitors, and a mediator. The stage driver is
responsible for setting the input signals required by the stage.
Usually, input signals (an operation strobe and parameters) are
set by initial stages. The driver is executed at the beginning of
the cycle on which the stage is carried out. The stage monitor
reads the output signals and the internal data affected by the
stage and converts them into the specification representation.
The information obtained by the monitor is used for checking
the stage correctness. The monitor is executed at the end of
the cycle occupied by the stage. The mediator reads the output
signals and the internal data shared by all operations of the
design and converts them into the specification representation.
It synchronizes the specification state with the implementation
one. The mediator is executed at the end of each cycle of
simulation.

D. Organization of Testbench Checkers

Assume that each stages is specified by a Hoare triple
{Ps}Cs{Qs} and supplied by a driverDs and a monitorMs.
In addition, a mediatorM is defined. LetS be a set of current
stages. To check correctness of the design behavior in response
to a certain set of stimuli, a testbench works as follows.

• At the beginning of the cycle:
– The testbench calculates the set of active stages:

Enabled← {s ∈ S | Ps(·) = true}.

– Then, it executes the drivers of the active stages in
some order. The order is unimportant, because the
stages are independent.

• At the end of the cycle:
– The testbench executes the commands of the active

stages.
– Then, it executes the monitors of the active stages

and the mediator.
– After that, the testbench estimates the design be-

havior by checking the postconditions of the active
stages:

Check(·) =
∧

s∈Enabled

Qs(·).

– Finally, it updates the set of current stages:

S ← {s | s ∈ S \ Enabled} ∪
⋃

s∈Enabled

succs(·).



Here, succs is a function that returns the set of
successive stages of the stages.

The testbench checkers organization described above is a
general one. There are two different flavors of the method:
hidden state testingandopen state testing.

In the hidden state approach, the testbench’s monitors and
mediator do not read the internal data of the design. The only
information that they care about are the output signals. The
testbench uses the stage commands to emulate the design
behavior (results of the commands are used to check the
design’s outputs). Hidden state testing allows to abstract away
from the implementation details and thereby to increase the
reusability of tests.

In the open state approach, the testbench’s monitors and
mediator read the internal data of the design to synchronize
the specification state with the implementation one on each
cycle of simulation. If open state testing is used, the stage
commands are not needed, because the testbench is able to
obtain their results without emulation. The approach improves
the quality of verification by increasing the observability of
checkers.

IV. TOOL SUPPORT

The suggested approach to specification-driven testbench
development is supported by the CTESK toolkit developed
at ISPRAS [4], [5]. This toolkit is originally intended for
testing software systems written in C programming language,
but it has been adapted for simulation-based verification of
RTL models of hardware designs.

CTESK uses SeC language for development of testbench
components. SeC is a C extension, which has additional
constructs for description of specifications, drivers, monitors,
and other components. The toolkit supports the advanced
FSM-based techniques for test sequence generation, but this
is out of the paper’s scope.

Testbench functionality connected with interpretation of
cycle-accurate contract specifications and response checking
is implemented as a library extension of CTESK. The library
emulates behavior of the design’s pipeline by checking the
preconditions of the current stages, executing the commands
of the active stages, and by checking the postconditions of the
active stages.

V. CASE STUDY

The suggested method has been used in several industrial
projects on verification of microprocessor units (translation
lookaside buffer, cache memory, floating-point unit, arithetic
and logic unit, and others). The most complex project is
testbench development for the L2 cache of the MIPS64-
compatible microprocessor.

The cache under verification is a direct-mapped 256 KB
buffer that consists of 8192 rows and serves both data and
instructions. It implements operations for loading and storing
data, for loading instructions, for modifying control informa-
tion, and some others (total number of the operations is 6).

All operations are multistage and comprises 92 microopera-
tions. Many operations contain branching of control flow and
repetitive sequences of microoperations. Some operations can
be started in parallel (maximum number of parallel starting
operations is 3).

Specifications of microoperations were represented in the
form of Hoare triples. It should be emphasized that all require-
ments were cheaply formalized (total number of the non-trivial
preconditions, commands and postcondition is about 120).
The volume of specifications is about 3 KLOC in SeC. The
labor costs of the testbench development including creation
of stimuli generators are 6 man-months. In this project we
have found 12 functional errors in the design implementation
including very critical ones.

Our experience has shown the following advantages of the
approach: (i) thoroughness of response checking (testbench
checkers take into account all possible situations in operations
execution), (ii) acceptable level of labor costs (testbench
development consumes about 20-30% of RTL development
efforts), and (iii) ease of debugging (if there is inconsistency
between specifications and an implementation is found, a
testbench knows which particular microoperation violates the
requirements).

VI. CONCLUSION

The method described in the paper is applicable to a
wide rage of synchronous hardware including parallel-pipeline
designs with control flow branching and parallel threads inside
individual operations. The method combines strengths of as-
sertions and co-simulation while minimizing their weaknesses.
Like assertions, it uses predicates for specification of the
design behavior, but, in contrast to them, the predicates are
not scattered. Instead, they are composed into a full-scale
reference model of the design. Such kind of model is not hard
to develop, as opposed to conventional co-simulation, because
the model’s core is separated out as a run-time CTESK library.
The only input data that verification engineer should provide
to the tool are a description of operations’ control flow and
contracts of microoperations. The suggested approach has been
successfully used in several industrial projects on hardware
verification. Further we are planning to develop visual tools
for simplifying creation of specifications and tests.

REFERENCES

[1] J. Bergeron. “Writing testbenches: functional verification of HDL mod-
els”. Kluwer Academic Publishers, 2000.

[2] W. Lam. “Hardware design verification: simulation and formal method-
based approaches”. Prentice Hall, 2005.

[3] S. Qadeer, S. Tasiran. “Promising directions in hardware design verifica-
tion”. Proceedings of ISQED, 2002.

[4] http://hardware.ispras.ru
[5] http://www.unitesk.com
[6] C.-M.R. Ho. Validation tools for complex digital designs. PhD thesis,

Stanford University, 1996.
[7] H.D. Foster, A.C. Krolnik, D.J. Lacey. “Assertion-based design”. Kluwer

Academic Publishers, 2004.
[8] C.A.R. Hoare. “An axiomatic basis for computer programming”. Com-

munications of the ACM, 12(10):576-580,583, 1969.
[9] A. Kamkin. “Contract specification of pipelined designs: application to

testbench automation”. Proceedings of SYRCoSE, 2007.


