
 1

Combinatorial Model-Based Test Program
Generation for Microprocessors

Alexander Kamkin
Institute for System Programming of Russian Academy of Sciences

25, B. Kommunisticheskaya, Moscow, 109004, Russia
E-mail: kamkin@ispras.ru

Abstract. In this paper we describe a method of automated test program generation intended for
systematic functional verification of microprocessors. The method supplements such widely-spread
practical approaches as software-based verification and random generation. In our method, construction
of test programs is based on microprocessor model, which includes structural model and instruction set
model. The goal of generation is defined by means of instruction-level test coverage. Test programs are
constructed by combining test situations for different sequences of instructions.

1. Introduction
Increasing complexity of microprocessors and shrinking time-to-market cause functional
verification to be a key component of the microprocessor design cycle. The need of automated
verification methods is widely recognized by the semiconductor industry. While significant
progress has been made through the use of formal methods, these methods are still limited to the
verification of relatively small blocks, or to very focused verification goals [1]. In core-level
verification of microprocessors simulation-based techniques still play a major role.

Verification of microprocessors on a core level is usually performed with the help of test
programs. Test programs can be produced by different ways. For example, they can be made by
cross-compilation of the existing software. The other widely-distributed technique of test
program construction is random generation. However, such kind of methods are not systematic
and do not guarantee the high quality of verification.

Analysis of errors in MIPS R4000 PC/SC microprocessor shows that most of the bugs (56.5%)
are related to multiple interactions between subsystems of microprocessor [2, 3]. To uncover
such bugs it is necessary to fulfill multiple constraints on different instructions of test program
simultaneously. This type of error is hard to find using hand-written tests because there is a huge
number of multiple interaction cases. Random programs might find such bugs, but each of the
constraints is so improbable that finding an error that occurs at the conjunction of these
constraints requires a prohibitively large number of simulation cycles [3].

The method suggested in this paper is directed against multiple interaction bugs. It should be
emphasized that our method does not replace any other approach. It has its own niche and can be
considered as an addition to existing techniques. In compliance with the method we have
developed the test program generator, called TestFusion 4M. It is a model-based test program
generator which uses instruction-level test coverage and combinatorial techniques to construct
varied sequences of instructions. The generator has been successfully used in a number of
projects. This paper describes two of them.

The rest of the paper is organized as follows. The second section reviews existing approaches to
test program generation. In the third section the suggested method is described. This section
briefly considers organization of microprocessor model and structure of test coverage. In the
forth section directions of future research are outlined. They touch upon the issues of automatic
derivation of test coverage from microprocessor model, paying attention to the model-based
construction of test templates. The fifth section comprises two case studies. Finally, the sixth
section concludes the paper.

 2

2. Methods of Test Program Generation
Nowadays there are several widespread methods of test program construction:

• manual development of test programs;
• cross-compilation of existing software;
• random generation of test programs;
• template-driven generation of test programs.

Manual development of test programs is a popular approach for testing corner case situations. To
create such kind of tests verification engineer should know details of microprocessor under
verification. Evidently, this method is very low-productive. The other big problem of the
approach is that verification engineer might overlook situation that is important for
verification [4].

The other method in general use is software-based verification. It is always performed for
verification of general purpose microprocessors. At least, microprocessors are verified on one or
several operating systems. It should be noticed that tests based on existing software do not
guarantee the high quality of verification. This type of tests extensively covers functionality of
microprocessors, but not deep enough.

The simplest method of automated test program construction is random generation. This method
allows to quickly discover relatively simple bugs. The other advantage of random generation is
that it may create situations which are difficult to be imagined, but are interesting for testing [4].
Fully random generation is almost useless for producing corner cases and discovering multiple
interaction errors.

In our opinion, the most perspective way of automated test program construction is template-
driven generation. Test template is an abstract representation of test program or its fragment,
which, first, fixes or restricts sequence of instructions, and second, constrains values of operands.
To construct test program generator finds a random solution of the corresponding set of
constraints. The use of test templates reduces labor costs of verification. However, if test
templates are developed manually, there is a possibility to miss important test cases.

2.1. Related Work
The IBM company has been using automated test program generators since 1980s [5]. The need
in a general method, which is suitable for wide class of microprocessor architectures, has led the
company to a model-based approach. In this approach generator is split into two main
components: engine (which is independent from microprocessor) and model (which describes
target architecture). By now IBM has developed template-driven generator Genesys-Pro [5]. The
advantages of Genesys-Pro are expressive language for test template description and convenient
framework for microprocessor modeling.

An interesting method for verification of pipelined microprocessors is proposed by P. Mishra
(University of Florida) and N. Dutt (Center for Embedded Computer Systems, University of
California) [6]. The authors use EXPRESSION language to describe microprocessor pipeline [7].
EXPRESSION description is translated into SMV model [8]. Verification engineer specifies a
set of temporal properties which describe different situations in pipeline operational behavior
(bypasses, control transfers, etc.). SMV tries to create counter-examples for the negations of the
specified properties using model-checking techniques. Created counter-examples are mapped
into test programs. The important feature of the approach is purposefulness (one test program
covers one property). However, the suggested methodology does not scale well on complex
industrial designs.

 3

S. Ur and Y. Yadin (IBM Haifa Research Lab) propose a test generation method based on finite
state machine (FSM) traversal [9]. The idea is in the following. Verification engineer manually
develops SMV model of microprocessor. CFSM tool constructs set of paths (abstract tests) that
cover all transitions of FSM derived from the model [10]. Abstract tests are translated into
Genesys test templates. The method allows to achieve good coverage of control logic. There are
two main drawbacks of the method. First, skilful expert is needed to develop SMV model of
microprocessor. Second, to have the ability to map abstract tests into concrete ones, verification
engineer should develop rather complex description in Genesys.

The other method based on FSM models is proposed by K. Kohno and N. Matsumoto (Toshiba)
[11]. The researchers have implemented their method in mVpGen tool. The only input of the tool
is pipeline specification. On the base of specification mVpGen automatically generates tests
cases and FSM model of microprocessor. Test cases are states of FSM in which hazards between
instructions are occurred. For each reachable test case a test template is constructed. Test
template is a path from the initial state of FSM to a state that corresponds to the test case.
Finally, on the base of templates test programs are generated.

The completely different method, based on genetic algorithms, is proposed by F. Corno,
G. Cumani, et al. (Politecnico di Torino) [12]. Generation uses a library of instructions, which
describes assembler syntax of microprocessor under verification. Test program is represented as
directed acyclic graph (DAG). Each DAG's node corresponds to program's instruction. It
contains a reference to the instruction description in the library and, if it is necessary, values of
operands. Test program is constructed by mutation of graph structure and values of operands
inside the individual nodes. The method is rather flexible and multipurpose. It allows to achieve
high level of test coverage for different metrics, but generation time can be considerable.

2.2. Niche of the Combinatorial Model-Based Methods
Summing up, many researchers come to consensus that model-based generation of test programs
gives many advantages. The main question is what kind of models should be used. A number of
papers are dedicated to test program generation on the base of cycle-accurate models. This type
of methods are intended for increasing test coverage achieved by existing tests [13, 14] and for
generation of tests directed to very specific corner cases [6].

Let us note some problems that appear when cycle-accurate models are used. There are two main
ways to obtain a model – automatic derivation from register-transfer-level (RTL) model
[2, 4, 13, 14] and manual development [9, 11]. Automatic derivation is a very complex task.
Researchers recognize two approaches to do it – code annotation [2] and heuristics [13, 14].
Fully automatic derivation of model for complex microprocessors is next to impossible. Manual
development confronts with the other problem – model should be debugged [9]. It should be also
emphasized that it is very difficult to use cycle-accurate models at early stages of the
microprocessor design cycle, because they are not clearly defined.

In this paper we consider test program generation based on instruction-level models. Such kind
of models are a basis for generation of a great bulk of tests for microprocessors. Instruction-level
generation of test programs has two poles – fully random generation and scenario-driven
generation. The first of them is a low-budget method that allows to generate ample quantity of
undirected tests. The second one is a more complicated method. It is a flavor of template-driven
generation where complex purposeful templates, called scenarios, are used. This type of
generation is supported in industrial tools, like Genesys-Pro [5].

 4

Te
st

s
D

ire
ct

ed
ne

ss

Figure 1. Niche of Combinatorial Model-Based Methods.

Communication with verification engineers points that there is a gap between random generation
and scenario-driven generation of test programs. We think that this gap can be filled by
combinatorial methods (see Fig. 1). Such methods use instruction-level test coverage and
combinatorial techniques for automatic construction of test templates. Combinatorially generated
test templates are not as complex and sensible as manually developed scenarios, but they are
generated automatically in a systematic way. Our experience has shown that this make it possible
to discover additional bugs which can be omitted by random generation and scenario-driven
generation.

3. Description of the Method
The idea of the suggested method is based on the assumption that operational behavior of
microprocessor depends on set of executing instructions (pipeline state), dependencies between
them (via registers or memory), and situations (events) appearing when instructions are executed
(exceptions, cache hits/misses, etc.).

3.1. Method Conceptions
In this section we consider the main conceptions of the suggested method: test template,
dependency, test situation, and test action. First of all, let us consider a structure of generated test
programs. It can be described by formula π = πstart ⋅ {〈πi, xi[si, di]〉}i=1,n ⋅ πstop, where:

• πstart – initialization program
is a prefix of test program that consists of instructions aimed for microprocessor
initialization;

• 〈πi, xi[si, di]〉 – test case (i = 1, …, n):
o πi – program of test action preparation

is a sequence of instructions that initializes registers and memory of
microprocessor;

o xi[si, di] – test action
is a specially prepared sequence of instructions to be applied on microprocessor,
where si is a set of test situations, and di is a set of dependencies;

• πstop – finalization program
is a postfix of test program that consists of instructions aimed for microprocessor
finalization;

• n – size of test program
is a number of test actions within test program.

The key notion of the method is test action. Test action is described by test template (which is a
sequence of instructions to be applied on microprocessor without concrete values of operands),

 5

set of dependencies (which define how operands of different instructions are connected to each
other), and test situations (which constrain values of operands and state of microprocessor). The
goal of generation is systematic enumeration of test templates, dependencies and test situations.

Test Template. Test templates are sequences of instructions without concrete values of
operands. They are intended for creation of different states of microprocessor pipeline. For each
test template the generator creates a set of test actions, which are distinguished by dependencies
and test situations.

Analysis of errata shows that a lot of bugs (of course not all of them) can be discovered by short
sequences of instructions (2–5 instructions). Therefore we suggest using relatively short test
templates for combinatorial generation of test programs. It is obvious that even if short test
templates are used, their total number can be significant. To reduce number of test templates
special heuristics should be used. For example, similar instructions can be unified into
equivalence classes. If two test templates contain equivalent instructions at the same positions,
they are considered to be equivalent. Equivalence class of test templates is called generalized test
template.

We use enumeration of all generalized test templates of bounded length to perform combinatorial
generation of test programs. For instance, we often use pairs or triples of instructions. However,
it should be emphasized that TestFusion 4M supports other methods of combining instructions,
called combinators. It also implements decomposition of test templates into weakly connected
sections, which are enumerated independently by their own combinators.

Dependency. The usage of different test templates is not sufficient for thorough verification of
microprocessor. Microprocessor can execute instructions in different ways depending on
dependencies between them. In the suggested approach two types of dependencies are used –
register dependencies and address dependencies. Register dependencies are expressed by
equalities and non-equalities of registers in different instructions of test action. Address
dependencies are closely connected to a memory hierarchy of microprocessor. Here are some
examples of address dependencies: equality of virtual addresses, equality of physical addresses,
equality of virtual page numbers, equality of cache rows, etc.

Let us illustrate address dependency by the example of RM7000 microprocessor [15]. Consider
dependency which is equality of L1 rows accessed by two load/store instructions. We denote this
dependency by L1RowEqual. Physical address of RM7000 consists of 36 bits. Bits [11:5] are
used for indexing one of the 128 rows. Within each row there are four 64-bit doublewords of
data. Bits [4:3] are used to index one of these four doublewords. Bits [2:0] are used for indexing
one of the eight bytes within each doubleword. Bits [35:12] contain tag. So, two pieces of data
are mapped into the same L1 row if and only if bits [11:5] of their addresses are equal.

In general case dependency (family of homogeneous dependencies) between instructions is
described by set of attributes. Concrete values of attributes fix dependency of the given type.
Apart from attributes description of dependency includes the following components:

• iterator – enumerates all feasible combinations of attribute values;
• precondition – checks admissibility of using dependencies of the given type for given

pair of operands;
• constructor – constructs (totally or partially) value of dependent operand basing on

values of operands from which it depends via dependencies of the given type.

Consider dependency L1RowEqual. This dependency is described by one Boolean attribute.
Iterator enumerates values {true, false} in some order. Precondition of the dependency
checks if virtual addresses can be translated into physical ones (otherwise, when, for example,
invalid addresses are used, cache memory is not accessed). If there is a dependency which
attribute has value true, then constructor copies bits [11:5] from the determinant operand into

 6

the dependent one; if all dependencies are false, then constructor generates random value of
the bits which is different from the used ones.

Test Situation. Generally instructions behave differently depending on values of operands and
state of microprocessor. For example, an instruction that may cause an exception has two
alternative ways of execution: normal execution and exceptional execution. In this article we use
term test situation to refer to one of a number of variants of instruction execution. Formally, test
situation is a constraint on values of operands and state of microprocessor. Test situations are
derived from functional description of instruction set. Consider the description of instruction
add from MIPS64 manual [16]:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
 UNPREDICTABLE
endif
temp ← GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then
 SignalException(IntegerOverflow)
else
 GPR[rd] ← sign_extend(temp31..0)
endif

The first branch corresponds to the negation of the instruction's precondition. In this example
both registers rs and rt must be initialized by sign-extended 32-bit words. Predicate
temp32 ≠ temp31 determines the test situation corresponding to the integer overflow
exception; the complementary situation corresponds to the normal execution of the instruction.

Like dependency, test situation (family of homogeneous test situations) is described by set of
attributes. Concrete values of attributes fix test situation of the given type. Apart from attributes
description of test situation includes the following components:

• iterator – enumerates all feasible combinations of attribute values;
• constructor – constructs values of the operands;
• preparator – builds program of test situation preparation, which initializes instruction

operands and state of microprocessor.

Consider instruction add. Test situations for this instruction (on some level of abstraction) are
parameterized by Boolean attribute IntegerOverflow. If the attribute is true, it means that
values of the operands should cause the integer overflow exception; otherwise the exception
should not be caused. Constructor generates random values of independent operands, such that
overflow condition is satisfied if and only if IntegerOverflow is true. Preparator for each
independent operand appends to preparation program instructions which load the constructed
value into the corresponding register.

Test Action. Test action is a sequence of instructions with given values of operands, and which
execution is started in a given state of microprocessor. Test actions are said to be equivalent if
their test templates are equivalent and they have equivalent dependencies and test situations. An
equivalence class of test actions is called generalized test action.

The goal of generation is construction of all feasible generalized test actions. To achieve this
goal the generator solves two tasks: enumeration of generalized test actions and construction of
test actions. On each step of enumeration the generator formulates a set of constraints on a test
action. These constraints are solved on the construction phase. Enumeration of generalized test
actions is done with the help of iterators. Construction of test actions is implemented by
constructors and preparators.

 7

3.2. Model of Microprocessor
The suggested method of test program generation is based on microprocessor model. Model
contains static and dynamic information on microprocessor under verification. Static constituent
includes structure of microprocessor’s subsystems, descriptions of instructions, and other
information which is usually known as architecture. Dynamic part of the model is an abstract
representation of microprocessor state. The generator interprets instructions appended to a test
program by changing the model state. This allows to control instructions' preconditions and to
correctly prepare test situations. It should be emphasized that model-based generation allows to
create self-checking test programs, which contain build-in checks of the microprocessor state.

A key part of the model is a description of the microprocessor instruction set. Description of an
individual instruction includes the following components:

• instruction interface – describes the operands of the instruction. Definition of each
operand contains name, type (immediate or register), data type (word, floating-point
number, etc.), and data flow direction (input, output, or inout);

• instruction precondition – defines situations when execution of the instruction is
predictable;

• function of instruction execution – calculates values of the output operands of the
instruction and updates model state of the microprocessor;

• assembler format – specifies assembler format of the instruction.

3.3. Generator TestFusion 4M
The TestFusion 4M generator takes microprocessor model, description of test coverage (test
situations and dependencies), and generation parameters as input. Some instructions are marked
as being under verification – these instructions are used for making test actions.

Test program generation is carried out as follows. Test templates, dependencies, and test
situations are enumerated. First of all, the generator allocates registers according to the register
dependencies. Then, for each instruction of the test action it constructs address dependencies and
test situations. After that, it creates a preparation program for the instruction. From preparation
programs of all instructions of the test action the generator constructs an aggregate preparation
program. Process continues until all generalized test actions are enumerated. Here is the
simplistic scheme of the generation:

• get the next test template
o get the next set of register dependencies
o construct the register dependencies
o get the next set of test situations∗

 get the next set of address dependencies
 for each instruction of the test action:

• check precondition:
if the precondition is failed, then go to ∗

• check existence of address dependencies:
if address dependencies exist, then construct them

• construct test situation of the instruction
• get preparation program of the instruction

 construct preparation program of the test action
 interpret the preparation program

 8

 interpret the test action

At first sight, construction of aggregate preparation program is a trivial task – it is sufficient to
concatenate preparation programs of all instructions of test action. Commonly this method
works, but not always. There are situations when preparation program of an instruction has
influence on previous instructions. In such situations, verification engineer ought to divide
preparation programs of instructions into several fragments. Each fragment is responsible for
initialization of a certain subsystem of microprocessor. Verification engineer sorts fragments in
such an order that each successive fragment does not affect subsystems which are initialized by
the previous ones (this work can be automated). To have the ability to perform such ranking,
graph which reflects influence that initialization of one subsystem has on states of the others
should be acyclic.

The TestFusion 4M generator has the flexible architecture which is compliant with the method
concepts. The main components of the generator are responsible for enumeration of test
templates, dependencies, and test situations. These components form a generator core. User can
tune the generator core by selecting proper values of parameters. Apart from the core
components the generator has a number of libraries which simplify development of
microprocessor models and also include many ready-to-use components, like combinators, test
data generators, etc. To increase the ease of using TestFusion 4M it has graphical user interface
(see Fig. 2).

Figure 2. Graphical User Interface of TestFusion 4M.

4. Future Research
This section outlines several ideas we are planning to work with in the nearest future. The ideas
touch upon the issues of automatic derivation of test coverage (test situations and dependencies)
from microprocessor model and also have to do with model-based construction of test templates.
Microprocessor model comprises descriptions of instructions and descriptions of subsystems.
Since the descriptions are formal they can be used for automatic extraction of test situations and
dependencies between instructions.

Semantics of a particular instruction can be represented by an execution tree. Nodes of the
execution tree correspond to certain subsystems of the microprocessor; edges describe transfers
of control. Each edge contains a predicate which defines a condition for the corresponding
transition (see Fig. 3). Execution trees can be used for factorization of instructions. For example,
two instructions are considered to be equivalent, if they have the same execution tree or the same
prefix of execution trees. Such factorization can reduce the total amount of generated test

 9

templates. What is even more important is that execution trees can be used for automatic
extraction of test situations. Each situation corresponds to a path (branch) in the execution tree of
the instruction. For example, fragment of the execution tree in Fig. 3 defines four test situations:
{TLB[Hit, Valid], L1[Hit]}, {TLB[Hit, Valid], L1[Miss]}, {TLB[Hit,
Invalid]} и {TLB[Miss]}.

Figure 3. Fragment of execution tree of load/store instructions.

To have the ability to extract dependencies between instructions, descriptions of subsystems
should include all necessary information, like resource access type (direct-mapped, set-
associative, associative, etc.), number of elements, structure of elements, function of tag
calculation (for buffers), etc. For example, description of TLB might look like this:

associative buffer TLB<TLB_ENTRY, 64> {
VIRTUAL_PAGE_NUMBER tag(VIRTUAL_ADDRESS va) { ... }

}

structure TLB_ENTRY {
 VIRTUAL_PAGE_NUMBER vpn;

PHYSICAL_PAGE_NUMBER pfn;
}

From this description one can automatically derive dependency TLB_ENTRY_EQUAL which
describes access to the same TLB entry from two different load/store instructions.

Consider test template construction. One of the possible scenarios can be the following.
Verification engineer selects subsystems he or she wants to verify. The generator analyzes the
execution trees of the instructions and determines which of them use the selected subsystems.
Then, it factorizes these instructions, if necessary, and extracts test situations and dependencies
for them. Finally, it starts the generation of test templates. The main question here is how to
construct test templates for the given set of instructions. One of the promising approaches is
based on FSM traversal.

Since we use high-level models it is impossible to extract cycle-accurate FSM of the
microprocessor. However, we can construct abstract FSM model by adding special attributes to
the execution trees’ nodes (execution time, capability of concurrent processing of instructions,
etc.). Using these attributes we can tune time aspects of instructions execution. FSM states can
be of the type {(branchi, nodei, timei)}i=1,n, where branchi is a branch in the
execution tree, nodei is a current node, and timei is a time of instruction processing in the
current node (see Fig. 4).

L1

TLB

Hit, Valid Hit, Invalid

Exception:
TLBInvalid

Hit Miss

Exception:
TLBRefill

Miss

 10

Figure 4. Fragment of abstract FSM of pipeline.

The goal of generation is to traverse the abstract FSM. On each step of construction the generator
chooses an instruction to be added into the test template, test situation (branch of the instruction
execution), and dependencies between this instruction and currently executing instructions
(which are presented in the state). To reduce the total size of constructed test templates the
generator can use special heuristics. For example, it can restrict the number of dependencies
between instructions.

The other promising direction of future work is integration into TestFusion 4M some facilities of
OTK [17] and Pinery [18] generators, which are aimed for complex test data generation, and like
TestFusion 4M, are developed at Institute for System Programming of RAS. Particularly, such
facilities can be used for generation of various control flow and data flow graphs of test
programs.

5. Case Studies
The TestFusion 4M generator has been used in two industrial projects: verification of memory
management unit (MMU) of MIPS64-compatible microprocessor and core-level verification of
the other MIPS64-compatible microprocessor. It should be emphasized that in both projects
apparent from combinatorial generation we used different verification methods, like random
generation, scenario-driven generation, and manual test development. Test programs generated
by TestFusion 4M found additional bugs which were omitted by other verification techniques.

5.1. Verification of Memory Management Unit
Test actions on MMU were organized as pairs of load/store instructions: lb (load byte), ld
(load double-word), sb (store byte), and sd (store double-word). Test situations for the
instructions were parameterized by the following attributes:

• isMapped – mapped/unmapped virtual address space;
• isCached – cached/uncached virtual address space;
• tlbHit – TLB hit/miss;
• DVG – control bits of TLB section1;
• dtlbHit – DTLB2 hit/miss;
• cachePolicy – cache policy;

1 In MIPS64 microprocessors TLB entry consists of two sections – the first section is for even virtual page and the
second one is for odd virtual page.
2 DTLB (Data TLB) is a small buffer that caches TLB entries for operations of data address translation.

(load{TLB[Hit, Valid], L1[Hit]}, TLB, 0) (load{TLB[Hit, Valid], L1[Hit]}, L1, 0)
(store{TLB[Miss]}, START, 0)

store{TLB[Miss]}

 11

• l1Hit – L1 hit/miss;
• l2Hit – L2 hit/miss.

Dependencies between instructions were described with the help of the following attributes:

• vaEqual – equality/inequality of virtual addresses;
• tlbEqual – equality/inequality of TLB entries;
• pageEqual – equality/inequality of TLB sections;
• paEqual – equality/inequality of physical addresses;
• l1RowEqual – equality/inequality of L1 rows;
• l2RowEqual – equality/inequality of L2 rows;
• dtlbReplace – equality/inequality of TLB entry used by the second instruction with

the TLB entry replaced from DTLB by the first instruction;
• l1Replace – equality/inequality of L1 tag of physical address used by the second

instruction with the tag replaced from the L1 cache by the first instruction;
• l2Replace – equality/inequality of L2 tag of physical address used by the second

instruction with the tag replaced from the L2 cache by the first instruction.

We have found one critical bug in the MMU design that appears only if certain constraints on
instructions and dependencies between them are satisfied.

5.2. Verification of MIPS64 Microprocessor
Core-level verification of the MIPS64-compatible microprocessor is the most large-scale
application of the suggested method. In this project we used triples of instructions as test actions.
Total number of instructions is 2213. All instructions were clustered into 13 groups:

• arithmetic (33 instructions);
• logic (8);
• move (8);
• shift (15);
• branch (20);
• nop (2);
• memory (26);
• interrupt (14);
• system (13);
• fpu.arithmetic (24);
• fpu.move (26);
• fpu.convert (26);
• fpu.branch (6).

To reduce size of test programs we used the following heuristic – test actions were composed by
instructions from at most two different groups. Test situations and dependencies used for
load/store instructions were very similar to the described in the first case study. Test data for all

3 Instructions differing by format of operands, for example, add.s (addition of single-precision numbers) and
add.d (addition of double-precision numbers), were considered as different instructions.

 12

kinds of arithmetic instructions were directed to exceptional cases and boundary values. Branch
instructions were described by condition value (for conditional jumps) and jump direction
(forward or backward). We have found 9 errors in the RTL model of the microprocessor and 6
errors in the microprocessor simulator.

6. Conclusion
In this paper we have described the method of automated test program generation for
microprocessors. In contrast to widely-spread practical methods, like software-based verification
and random generation, combinatorial model-based approach is much more systematic and
technological. Our experience shows that the suggested method allows to find bugs which are
usually omitted by other verification techniques. We position this method as an essential
supplementation to existing approaches. Since the description of combinatorial tests does not
require a lot of labor costs, such kind of testing can be done prior to advanced scenario-driven
generation. In compliance with the method we have developed test program generator
TestFusion 4M which has been successfully used in a number of projects. Further, we are
planning to implement facilities of automatic test coverage derivation and construction of test
templates.

References
1. M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, M. Vinov. Industrial Experience with

Test Generation Languages for Processor Verification. Design Automation Conference,
2004.

2. MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0. MIPS Technologies Inc.,
May 10, 1994.

3. R. Ho, C. Han Yang, M. Horowitz, D.L. Dill. Architecture Validation for Processors.
International Symposium on Computer Architecture, 1995.

4. R. Ho. Validation Tools for Complex Digital Designs. PhD Thesis. November, 1996.

5. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:
Innovations in Test Program Generation for Functional Processor Verification. Design
and Test, 2004.

6. P. Mishra, N. Dutt. Automatic Functional Test Program Generation for Pipelined
Processors Using Model Checking. IEEE International High-Level Design Validation
and Test Workshop, 2002.

7. P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, A. Nicolau. EXPRESSION: An ADL
for System Level Design Exploration. Technical Report 1998-29, University of
California, Irvine, 1998.

8. www.cs.cmu.edu/~modelcheck/smv.html.

9. S. Ur and Y. Yadin. Micro Architecture Coverage Directed Generation of Test
Programs. Design Automation Conference, 1999.

10. D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, Y. Wolfsthal. Coverage
Directed Test Generation Using Symbolic Techniques. Formal Methods in Computer
Aided Design, 1996.

11. K. Kohno, N. Matsumoto. A New Verification Methodology for Complex Pipeline
Behavior. Design Automation Conference, 2001.

12. F. Corno, M. Sonza Reorda, G. Squillero, M. Violante. A Genetic Algorithm-Based
System for Generating Test Programs for Microprocessor IP Cores. IEEE International
Conference on Tools with Artificial Intelligence, 2000.

 13

13. D. Moundanos, J. Abraham, Y. Hoskote. A Unified Framework for Design Validation
and Manufacturing Test. International Test Conference, 1996.

14. D. Moundanos, J. Abraham, Y. Hoskote. Abstraction Techniques for Validation
Coverage Analysis and Test Generation. IEEE Transactions on Computers, Vol. 47,
1998.

15. RM7000 Family User Manual. Issue 1, May 2001.

16. MIPS64TM Architecture For Programmers. Revision 2.0. MIPS Tecnologies Inc., June 9,
2003.

17. A.S. Kossatchev, A.K. Petrenko, S.V. Zelenov, S.A. Zelenova. Application of Model-
Based Approach for Automated Testing of Optimizing Compilers. International
Workshop on Program Understanding, 2003.

18. A.V. Demakov, S.V. Zelenov, S.A. Zelenova. Generation of Structurally Complex Test
Data with Respect to Context Constraints. Proceedings of Institute for System
Programming of RAS, 2006 (In Russian).

