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Abstract. In this paper we describe a method of automated test program generation intended for 
systematic functional verification of microprocessors. The method supplements such widely-spread 
practical approaches as software-based verification and random generation. In our method, construction 
of test programs is based on microprocessor model, which includes structural model and instruction set 
model. The goal of generation is defined by means of instruction-level test coverage. Test programs are 
constructed by combining test situations for different sequences of instructions. 

1. Introduction 
Increasing complexity of microprocessors and shrinking time-to-market cause functional 
verification to be a key component of the microprocessor design cycle. The need of automated 
verification methods is widely recognized by the semiconductor industry. While significant 
progress has been made through the use of formal methods, these methods are still limited to the 
verification of relatively small blocks, or to very focused verification goals [1]. In core-level 
verification of microprocessors simulation-based techniques still play a major role. 

Verification of microprocessors on a core level is usually performed with the help of test 
programs. Test programs can be produced by different ways. For example, they can be made by 
cross-compilation of the existing software. The other widely-distributed technique of test 
program construction is random generation. However, such kind of methods are not systematic 
and do not guarantee the high quality of verification. 

Analysis of errors in MIPS R4000 PC/SC microprocessor shows that most of the bugs (56.5%) 
are related to multiple interactions between subsystems of microprocessor [2, 3]. To uncover 
such bugs it is necessary to fulfill multiple constraints on different instructions of test program 
simultaneously. This type of error is hard to find using hand-written tests because there is a huge 
number of multiple interaction cases. Random programs might find such bugs, but each of the 
constraints is so improbable that finding an error that occurs at the conjunction of these 
constraints requires a prohibitively large number of simulation cycles [3]. 

The method suggested in this paper is directed against multiple interaction bugs. It should be 
emphasized that our method does not replace any other approach. It has its own niche and can be 
considered as an addition to existing techniques. In compliance with the method we have 
developed the test program generator, called TestFusion 4M. It is a model-based test program 
generator which uses instruction-level test coverage and combinatorial techniques to construct 
varied sequences of instructions. The generator has been successfully used in a number of 
projects. This paper describes two of them. 

The rest of the paper is organized as follows. The second section reviews existing approaches to 
test program generation. In the third section the suggested method is described. This section 
briefly considers organization of microprocessor model and structure of test coverage. In the 
forth section directions of future research are outlined. They touch upon the issues of automatic 
derivation of test coverage from microprocessor model, paying attention to the model-based 
construction of test templates. The fifth section comprises two case studies. Finally, the sixth 
section concludes the paper. 
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2. Methods of Test Program Generation 
Nowadays there are several widespread methods of test program construction: 

• manual development of test programs; 
• cross-compilation of existing software; 
• random generation of test programs; 
• template-driven generation of test programs. 

Manual development of test programs is a popular approach for testing corner case situations. To 
create such kind of tests verification engineer should know details of microprocessor under 
verification. Evidently, this method is very low-productive. The other big problem of the 
approach is that verification engineer might overlook situation that is important for 
verification [4]. 

The other method in general use is software-based verification. It is always performed for 
verification of general purpose microprocessors. At least, microprocessors are verified on one or 
several operating systems. It should be noticed that tests based on existing software do not 
guarantee the high quality of verification. This type of tests extensively covers functionality of 
microprocessors, but not deep enough. 

The simplest method of automated test program construction is random generation. This method 
allows to quickly discover relatively simple bugs. The other advantage of random generation is 
that it may create situations which are difficult to be imagined, but are interesting for testing [4]. 
Fully random generation is almost useless for producing corner cases and discovering multiple 
interaction errors. 

In our opinion, the most perspective way of automated test program construction is template-
driven generation. Test template is an abstract representation of test program or its fragment, 
which, first, fixes or restricts sequence of instructions, and second, constrains values of operands. 
To construct test program generator finds a random solution of the corresponding set of 
constraints. The use of test templates reduces labor costs of verification. However, if test 
templates are developed manually, there is a possibility to miss important test cases. 

2.1. Related Work 
The IBM company has been using automated test program generators since 1980s [5]. The need 
in a general method, which is suitable for wide class of microprocessor architectures, has led the 
company to a model-based approach. In this approach generator is split into two main 
components: engine (which is independent from microprocessor) and model (which describes 
target architecture). By now IBM has developed template-driven generator Genesys-Pro [5]. The 
advantages of Genesys-Pro are expressive language for test template description and convenient 
framework for microprocessor modeling. 

An interesting method for verification of pipelined microprocessors is proposed by P. Mishra 
(University of Florida) and N. Dutt (Center for Embedded Computer Systems, University of 
California) [6]. The authors use EXPRESSION language to describe microprocessor pipeline [7]. 
EXPRESSION description is translated into SMV model [8]. Verification engineer specifies a 
set of temporal properties which describe different situations in pipeline operational behavior 
(bypasses, control transfers, etc.). SMV tries to create counter-examples for the negations of the 
specified properties using model-checking techniques. Created counter-examples are mapped 
into test programs. The important feature of the approach is purposefulness (one test program 
covers one property). However, the suggested methodology does not scale well on complex 
industrial designs. 
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S. Ur and Y. Yadin (IBM Haifa Research Lab) propose a test generation method based on finite 
state machine (FSM) traversal [9]. The idea is in the following. Verification engineer manually 
develops SMV model of microprocessor. CFSM tool constructs set of paths (abstract tests) that 
cover all transitions of FSM derived from the model [10]. Abstract tests are translated into 
Genesys test templates. The method allows to achieve good coverage of control logic. There are 
two main drawbacks of the method. First, skilful expert is needed to develop SMV model of 
microprocessor. Second, to have the ability to map abstract tests into concrete ones, verification 
engineer should develop rather complex description in Genesys. 

The other method based on FSM models is proposed by K. Kohno and N. Matsumoto (Toshiba) 
[11]. The researchers have implemented their method in mVpGen tool. The only input of the tool 
is pipeline specification. On the base of specification mVpGen automatically generates tests 
cases and FSM model of microprocessor. Test cases are states of FSM in which hazards between 
instructions are occurred. For each reachable test case a test template is constructed. Test 
template is a path from the initial state of FSM to a state that corresponds to the test case. 
Finally, on the base of templates test programs are generated. 

The completely different method, based on genetic algorithms, is proposed by F. Corno, 
G. Cumani, et al. (Politecnico di Torino) [12]. Generation uses a library of instructions, which 
describes assembler syntax of microprocessor under verification. Test program is represented as 
directed acyclic graph (DAG). Each DAG's node corresponds to program's instruction. It 
contains a reference to the instruction description in the library and, if it is necessary, values of 
operands. Test program is constructed by mutation of graph structure and values of operands 
inside the individual nodes. The method is rather flexible and multipurpose.  It allows to achieve 
high level of test coverage for different metrics, but generation time can be considerable. 

2.2. Niche of the Combinatorial Model-Based Methods 
Summing up, many researchers come to consensus that model-based generation of test programs 
gives many advantages. The main question is what kind of models should be used. A number of 
papers are dedicated to test program generation on the base of cycle-accurate models. This type 
of methods are intended for increasing test coverage achieved by existing tests [13, 14] and for 
generation of tests directed to very specific corner cases [6]. 

Let us note some problems that appear when cycle-accurate models are used. There are two main 
ways to obtain a model – automatic derivation from register-transfer-level (RTL) model 
[2, 4, 13, 14] and manual development [9, 11]. Automatic derivation is a very complex task. 
Researchers recognize two approaches to do it – code annotation [2] and heuristics [13, 14]. 
Fully automatic derivation of model for complex microprocessors is next to impossible. Manual 
development confronts with the other problem – model should be debugged [9]. It should be also 
emphasized that it is very difficult to use cycle-accurate models at early stages of the 
microprocessor design cycle, because they are not clearly defined. 

In this paper we consider test program generation based on instruction-level models. Such kind 
of models are a basis for generation of a great bulk of tests for microprocessors. Instruction-level 
generation of test programs has two poles – fully random generation and scenario-driven 
generation. The first of them is a low-budget method that allows to generate ample quantity of 
undirected tests. The second one is a more complicated method. It is a flavor of template-driven 
generation where complex purposeful templates, called scenarios, are used. This type of 
generation is supported in industrial tools, like Genesys-Pro [5]. 
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Figure 1.  Niche of Combinatorial Model-Based Methods. 

Communication with verification engineers points that there is a gap between random generation 
and scenario-driven generation of test programs. We think that this gap can be filled by 
combinatorial methods (see Fig. 1). Such methods use instruction-level test coverage and 
combinatorial techniques for automatic construction of test templates. Combinatorially generated 
test templates are not as complex and sensible as manually developed scenarios, but they are 
generated automatically in a systematic way. Our experience has shown that this make it possible 
to discover additional bugs which can be omitted by random generation and scenario-driven 
generation. 

3. Description of the Method 
The idea of the suggested method is based on the assumption that operational behavior of 
microprocessor depends on set of executing instructions (pipeline state), dependencies between 
them (via registers or memory), and situations (events) appearing when instructions are executed 
(exceptions, cache hits/misses, etc.). 

3.1. Method Conceptions 
In this section we consider the main conceptions of the suggested method: test template, 
dependency, test situation, and test action. First of all, let us consider a structure of generated test 
programs. It can be described by formula π = πstart ⋅ {〈πi, xi[si, di]〉}i=1,n ⋅ πstop, where: 

• πstart – initialization program 
is a prefix of test program that consists of instructions aimed for microprocessor 
initialization; 

• 〈πi, xi[si, di]〉 – test case (i = 1, …, n): 
o πi – program of test action preparation 

is a sequence of instructions that initializes registers and memory of 
microprocessor; 

o xi[si, di] – test action 
is a specially prepared sequence of instructions to be applied on microprocessor, 
where si is a set of test situations, and di is a set of dependencies; 

• πstop – finalization program 
is a postfix of test program that consists of instructions aimed for microprocessor 
finalization; 

• n – size of test program 
is a number of test actions within test program. 

The key notion of the method is test action. Test action is described by test template (which is a 
sequence of instructions to be applied on microprocessor without concrete values of operands), 
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set of dependencies (which define how operands of different instructions are connected to each 
other), and test situations (which constrain values of operands and state of microprocessor). The 
goal of generation is systematic enumeration of test templates, dependencies and test situations. 

Test Template. Test templates are sequences of instructions without concrete values of 
operands. They are intended for creation of different states of microprocessor pipeline. For each 
test template the generator creates a set of test actions, which are distinguished by dependencies 
and test situations. 

Analysis of errata shows that a lot of bugs (of course not all of them) can be discovered by short 
sequences of instructions (2–5 instructions). Therefore we suggest using relatively short test 
templates for combinatorial generation of test programs. It is obvious that even if short test 
templates are used, their total number can be significant. To reduce number of test templates 
special heuristics should be used. For example, similar instructions can be unified into 
equivalence classes. If two test templates contain equivalent instructions at the same positions, 
they are considered to be equivalent. Equivalence class of test templates is called generalized test 
template. 

We use enumeration of all generalized test templates of bounded length to perform combinatorial 
generation of test programs. For instance, we often use pairs or triples of instructions. However, 
it should be emphasized that TestFusion 4M supports other methods of combining instructions, 
called combinators. It also implements decomposition of test templates into weakly connected 
sections, which are enumerated independently by their own combinators. 

Dependency. The usage of different test templates is not sufficient for thorough verification of 
microprocessor. Microprocessor can execute instructions in different ways depending on 
dependencies between them. In the suggested approach two types of dependencies are used – 
register dependencies and address dependencies. Register dependencies are expressed by 
equalities and non-equalities of registers in different instructions of test action. Address 
dependencies are closely connected to a memory hierarchy of microprocessor. Here are some 
examples of address dependencies: equality of virtual addresses, equality of physical addresses, 
equality of virtual page numbers, equality of cache rows, etc. 

Let us illustrate address dependency by the example of RM7000 microprocessor [15]. Consider 
dependency which is equality of L1 rows accessed by two load/store instructions. We denote this 
dependency by L1RowEqual. Physical address of RM7000 consists of 36 bits. Bits [11:5] are 
used for indexing one of the 128 rows. Within each row there are four 64-bit doublewords of 
data. Bits [4:3] are used to index one of these four doublewords. Bits [2:0] are used for indexing 
one of the eight bytes within each doubleword. Bits [35:12] contain tag. So, two pieces of data 
are mapped into the same L1 row if and only if bits [11:5] of their addresses are equal. 

In general case dependency (family of homogeneous dependencies) between instructions is 
described by set of attributes. Concrete values of attributes fix dependency of the given type. 
Apart from attributes description of dependency includes the following components: 

• iterator – enumerates all feasible combinations of attribute values; 
• precondition – checks admissibility of using dependencies of the given type for given 

pair of operands; 
• constructor – constructs (totally or partially) value of dependent operand basing on 

values of operands from which it depends via dependencies of the given type. 

Consider dependency L1RowEqual. This dependency is described by one Boolean attribute. 
Iterator enumerates values {true, false} in some order. Precondition of the dependency 
checks if virtual addresses can be translated into physical ones (otherwise, when, for example, 
invalid addresses are used, cache memory is not accessed). If there is a dependency which 
attribute has value true, then constructor copies bits [11:5] from the determinant operand into 
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the dependent one; if all dependencies are false, then constructor generates random value of 
the bits which is different from the used ones. 

Test Situation. Generally instructions behave differently depending on values of operands and 
state of microprocessor. For example, an instruction that may cause an exception has two 
alternative ways of execution: normal execution and exceptional execution. In this article we use 
term test situation to refer to one of a number of variants of instruction execution. Formally, test 
situation is a constraint on values of operands and state of microprocessor. Test situations are 
derived from functional description of instruction set. Consider the description of instruction 
add from MIPS64 manual [16]: 

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then 
    UNPREDICTABLE 
endif 
temp ← GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0) 
if temp32 ≠ temp31 then 
    SignalException(IntegerOverflow) 
else 
    GPR[rd] ← sign_extend(temp31..0) 
endif 

The first branch corresponds to the negation of the instruction's precondition. In this example 
both registers rs and rt must be initialized by sign-extended 32-bit words. Predicate 
temp32 ≠ temp31 determines the test situation corresponding to the integer overflow 
exception; the complementary situation corresponds to the normal execution of the instruction. 

Like dependency, test situation (family of homogeneous test situations) is described by set of 
attributes. Concrete values of attributes fix test situation of the given type. Apart from attributes 
description of test situation includes the following components: 

• iterator – enumerates all feasible combinations of attribute values; 
• constructor – constructs values of the operands; 
• preparator – builds program of test situation preparation, which initializes instruction 

operands and state of microprocessor. 

Consider instruction add. Test situations for this instruction (on some level of abstraction) are 
parameterized by Boolean attribute IntegerOverflow. If the attribute is true, it means that 
values of the operands should cause the integer overflow exception; otherwise the exception 
should not be caused. Constructor generates random values of independent operands, such that 
overflow condition is satisfied if and only if IntegerOverflow is true. Preparator for each 
independent operand appends to preparation program instructions which load the constructed 
value into the corresponding register. 

Test Action. Test action is a sequence of instructions with given values of operands, and which 
execution is started in a given state of microprocessor. Test actions are said to be equivalent if 
their test templates are equivalent and they have equivalent dependencies and test situations. An 
equivalence class of test actions is called generalized test action. 

The goal of generation is construction of all feasible generalized test actions. To achieve this 
goal the generator solves two tasks: enumeration of generalized test actions and construction of 
test actions. On each step of enumeration the generator formulates a set of constraints on a test 
action. These constraints are solved on the construction phase. Enumeration of generalized test 
actions is done with the help of iterators. Construction of test actions is implemented by 
constructors and preparators. 
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3.2. Model of Microprocessor 
The suggested method of test program generation is based on microprocessor model. Model 
contains static and dynamic information on microprocessor under verification. Static constituent 
includes structure of microprocessor’s subsystems, descriptions of instructions, and other 
information which is usually known as architecture. Dynamic part of the model is an abstract 
representation of microprocessor state. The generator interprets instructions appended to a test 
program by changing the model state. This allows to control instructions' preconditions and to 
correctly prepare test situations. It should be emphasized that model-based generation allows to 
create self-checking test programs, which contain build-in checks of the microprocessor state. 

A key part of the model is a description of the microprocessor instruction set. Description of an 
individual instruction includes the following components: 

• instruction interface – describes the operands of the instruction. Definition of each 
operand contains name, type (immediate or register), data type (word, floating-point 
number, etc.), and data flow direction (input, output, or inout); 

• instruction precondition – defines situations when execution of the instruction is 
predictable; 

• function of instruction execution – calculates values of the output operands of the 
instruction and updates model state of the microprocessor; 

• assembler format – specifies assembler format of the instruction. 

3.3. Generator TestFusion 4M 
The TestFusion 4M generator takes microprocessor model, description of test coverage (test 
situations and dependencies), and generation parameters as input. Some instructions are marked 
as being under verification – these instructions are used for making test actions. 

Test program generation is carried out as follows. Test templates, dependencies, and test 
situations are enumerated. First of all, the generator allocates registers according to the register 
dependencies. Then, for each instruction of the test action it constructs address dependencies and 
test situations. After that, it creates a preparation program for the instruction. From preparation 
programs of all instructions of the test action the generator constructs an aggregate preparation 
program. Process continues until all generalized test actions are enumerated. Here is the 
simplistic scheme of the generation: 

• get the next test template 
o get the next set of register dependencies 
o construct the register dependencies 
o get the next set of test situations∗ 

 get the next set of address dependencies 
 for each instruction of the test action: 

• check precondition: 
if the precondition is failed, then go to ∗ 

• check existence of address dependencies: 
if address dependencies exist, then construct them 

• construct test situation of the instruction 
• get preparation program of the instruction 

 construct preparation program of the test action 
 interpret the preparation program 
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 interpret the test action 

At first sight, construction of aggregate preparation program is a trivial task – it is sufficient to 
concatenate preparation programs of all instructions of test action. Commonly this method 
works, but not always. There are situations when preparation program of an instruction has 
influence on previous instructions. In such situations, verification engineer ought to divide 
preparation programs of instructions into several fragments. Each fragment is responsible for 
initialization of a certain subsystem of microprocessor. Verification engineer sorts fragments in 
such an order that each successive fragment does not affect subsystems which are initialized by 
the previous ones (this work can be automated). To have the ability to perform such ranking, 
graph which reflects influence that initialization of one subsystem has on states of the others 
should be acyclic. 

The TestFusion 4M generator has the flexible architecture which is compliant with the method 
concepts. The main components of the generator are responsible for enumeration of test 
templates, dependencies, and test situations. These components form a generator core. User can 
tune the generator core by selecting proper values of parameters. Apart from the core 
components the generator has a number of libraries which simplify development of 
microprocessor models and also include many ready-to-use components, like combinators, test 
data generators, etc. To increase the ease of using TestFusion 4M it has graphical user interface 
(see Fig. 2). 

 
Figure 2. Graphical User Interface of TestFusion 4M. 

4. Future Research 
This section outlines several ideas we are planning to work with in the nearest future. The ideas 
touch upon the issues of automatic derivation of test coverage (test situations and dependencies) 
from microprocessor model and also have to do with model-based construction of test templates. 
Microprocessor model comprises descriptions of instructions and descriptions of subsystems. 
Since the descriptions are formal they can be used for automatic extraction of test situations and 
dependencies between instructions. 

Semantics of a particular instruction can be represented by an execution tree. Nodes of the 
execution tree correspond to certain subsystems of the microprocessor; edges describe transfers 
of control. Each edge contains a predicate which defines a condition for the corresponding 
transition (see Fig. 3). Execution trees can be used for factorization of instructions. For example, 
two instructions are considered to be equivalent, if they have the same execution tree or the same 
prefix of execution trees. Such factorization can reduce the total amount of generated test 
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templates. What is even more important is that execution trees can be used for automatic 
extraction of test situations. Each situation corresponds to a path (branch) in the execution tree of 
the instruction. For example, fragment of the execution tree in Fig. 3 defines four test situations: 
{TLB[Hit, Valid], L1[Hit]}, {TLB[Hit, Valid], L1[Miss]}, {TLB[Hit, 
Invalid]} и {TLB[Miss]}. 

 
Figure 3. Fragment of execution tree of load/store instructions. 

To have the ability to extract dependencies between instructions, descriptions of subsystems 
should include all necessary information, like resource access type (direct-mapped, set-
associative, associative, etc.), number of elements, structure of elements, function of tag 
calculation (for buffers), etc. For example, description of TLB might look like this: 

associative buffer TLB<TLB_ENTRY, 64> { 
VIRTUAL_PAGE_NUMBER tag(VIRTUAL_ADDRESS va) { ... } 

} 
 
structure TLB_ENTRY { 
 VIRTUAL_PAGE_NUMBER  vpn; 

PHYSICAL_PAGE_NUMBER pfn; 
} 

From this description one can automatically derive dependency TLB_ENTRY_EQUAL which 
describes access to the same TLB entry from two different load/store instructions. 

Consider test template construction. One of the possible scenarios can be the following. 
Verification engineer selects subsystems he or she wants to verify. The generator analyzes the 
execution trees of the instructions and determines which of them use the selected subsystems. 
Then, it factorizes these instructions, if necessary, and extracts test situations and dependencies 
for them. Finally, it starts the generation of test templates. The main question here is how to 
construct test templates for the given set of instructions. One of the promising approaches is 
based on FSM traversal. 

Since we use high-level models it is impossible to extract cycle-accurate FSM of the 
microprocessor.  However, we can construct abstract FSM model by adding special attributes to 
the execution trees’ nodes (execution time, capability of concurrent processing of instructions, 
etc.). Using these attributes we can tune time aspects of instructions execution. FSM states can 
be of the type {(branchi, nodei, timei)}i=1,n, where branchi is a branch in the 
execution tree, nodei is a current node, and timei is a time of instruction processing in the 
current node (see Fig. 4).  

L1 

TLB 

Hit, Valid Hit, Invalid 

Exception: 
TLBInvalid 

Hit Miss 

Exception: 
TLBRefill 

Miss 
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Figure 4. Fragment of abstract FSM of pipeline. 

The goal of generation is to traverse the abstract FSM. On each step of construction the generator 
chooses an instruction to be added into the test template, test situation (branch of the instruction 
execution), and dependencies between this instruction and currently executing instructions 
(which are presented in the state). To reduce the total size of constructed test templates the 
generator can use special heuristics. For example, it can restrict the number of dependencies 
between instructions. 

The other promising direction of future work is integration into TestFusion 4M some facilities of 
OTK [17] and Pinery [18] generators, which are aimed for complex test data generation, and like 
TestFusion 4M, are developed at Institute for System Programming of RAS. Particularly, such 
facilities can be used for generation of various control flow and data flow graphs of test 
programs. 

5. Case Studies 
The TestFusion 4M generator has been used in two industrial projects: verification of memory 
management unit (MMU) of MIPS64-compatible microprocessor and core-level verification of 
the other MIPS64-compatible microprocessor. It should be emphasized that in both projects 
apparent from combinatorial generation we used different verification methods, like random 
generation, scenario-driven generation, and manual test development. Test programs generated 
by TestFusion 4M found additional bugs which were omitted by other verification techniques. 

5.1. Verification of Memory Management Unit 
Test actions on MMU were organized as pairs of load/store instructions: lb (load byte), ld 
(load double-word), sb (store byte), and sd (store double-word). Test situations for the 
instructions were parameterized by the following attributes: 

• isMapped – mapped/unmapped virtual address space; 
• isCached – cached/uncached virtual address space; 
• tlbHit – TLB hit/miss; 
• DVG – control bits of TLB section1; 
• dtlbHit – DTLB2 hit/miss; 
• cachePolicy – cache policy; 

                                                 

1 In MIPS64 microprocessors TLB entry consists of two sections – the first section is for even virtual page and the 
second one is for odd virtual page. 
2 DTLB (Data TLB) is a small buffer that caches TLB entries for operations of data address translation. 

(load{TLB[Hit, Valid], L1[Hit]}, TLB, 0) (load{TLB[Hit, Valid], L1[Hit]}, L1, 0) 
(store{TLB[Miss]}, START, 0) 

store{TLB[Miss]} 
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• l1Hit – L1 hit/miss; 
• l2Hit – L2 hit/miss. 

Dependencies between instructions were described with the help of the following attributes: 

• vaEqual – equality/inequality of virtual addresses; 
• tlbEqual – equality/inequality of TLB entries; 
• pageEqual – equality/inequality of TLB sections; 
• paEqual – equality/inequality of physical addresses; 
• l1RowEqual – equality/inequality of L1 rows; 
• l2RowEqual – equality/inequality of L2 rows; 
• dtlbReplace – equality/inequality of TLB entry used by the second instruction with 

the TLB entry replaced from DTLB by the first instruction; 
• l1Replace – equality/inequality of L1 tag of physical address used by the second 

instruction with the tag replaced from the L1 cache by the first instruction; 
• l2Replace – equality/inequality of L2 tag of physical address used by the second 

instruction with the tag replaced from the L2 cache by the first instruction. 

We have found one critical bug in the MMU design that appears only if certain constraints on 
instructions and dependencies between them are satisfied. 

5.2. Verification of MIPS64 Microprocessor 
Core-level verification of the MIPS64-compatible microprocessor is the most large-scale 
application of the suggested method. In this project we used triples of instructions as test actions. 
Total number of instructions is 2213. All instructions were clustered into 13 groups: 

• arithmetic (33 instructions); 
• logic (8); 
• move (8); 
• shift (15); 
• branch (20); 
• nop (2); 
• memory (26); 
• interrupt (14); 
• system (13); 
• fpu.arithmetic (24); 
• fpu.move (26); 
• fpu.convert (26); 
• fpu.branch (6). 

To reduce size of test programs we used the following heuristic – test actions were composed by 
instructions from at most two different groups. Test situations and dependencies used for 
load/store instructions were very similar to the described in the first case study. Test data for all 

                                                 
3 Instructions differing by format of operands, for example, add.s (addition of single-precision numbers) and 
add.d (addition of double-precision numbers), were considered as different instructions. 
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kinds of arithmetic instructions were directed to exceptional cases and boundary values. Branch 
instructions were described by condition value (for conditional jumps) and jump direction 
(forward or backward). We have found 9 errors in the RTL model of the microprocessor and 6 
errors in the microprocessor simulator. 

6. Conclusion 
In this paper we have described the method of automated test program generation for 
microprocessors. In contrast to widely-spread practical methods, like software-based verification 
and random generation, combinatorial model-based approach is much more systematic and 
technological. Our experience shows that the suggested method allows to find bugs which are 
usually omitted by other verification techniques. We position this method as an essential 
supplementation to existing approaches. Since the description of combinatorial tests does not 
require a lot of labor costs, such kind of testing can be done prior to advanced scenario-driven 
generation. In compliance with the method we have developed test program generator 
TestFusion 4M which has been successfully used in a number of projects. Further, we are 
planning to implement facilities of automatic test coverage derivation and construction of test 
templates. 

References 
1. M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, M. Vinov. Industrial Experience with 

Test Generation Languages for Processor Verification. Design Automation Conference, 
2004. 

2. MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0. MIPS Technologies Inc., 
May 10, 1994. 

3. R. Ho, C. Han Yang, M. Horowitz, D.L. Dill. Architecture Validation for Processors. 
International Symposium on Computer Architecture, 1995. 

4. R. Ho. Validation Tools for Complex Digital Designs. PhD Thesis. November, 1996. 

5. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro: 
Innovations in Test Program Generation for Functional Processor Verification. Design 
and Test, 2004. 

6. P. Mishra, N. Dutt. Automatic Functional Test Program Generation for Pipelined 
Processors Using Model Checking. IEEE International High-Level Design Validation 
and Test Workshop, 2002. 

7. P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt, A. Nicolau. EXPRESSION: An ADL 
for System Level Design Exploration. Technical Report 1998-29, University of 
California, Irvine, 1998. 

8. www.cs.cmu.edu/~modelcheck/smv.html. 

9. S. Ur and Y. Yadin. Micro Architecture Coverage Directed Generation of Test 
Programs. Design Automation Conference, 1999. 

10. D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, Y. Wolfsthal. Coverage 
Directed Test Generation Using Symbolic Techniques. Formal Methods in Computer 
Aided Design, 1996. 

11. K. Kohno, N. Matsumoto. A New Verification Methodology for Complex Pipeline 
Behavior. Design Automation Conference, 2001. 

12. F. Corno, M. Sonza Reorda, G. Squillero, M. Violante. A Genetic Algorithm-Based 
System for Generating Test Programs for Microprocessor IP Cores. IEEE International 
Conference on Tools with Artificial Intelligence, 2000. 



 13

13. D. Moundanos, J. Abraham, Y. Hoskote. A Unified Framework for Design Validation 
and Manufacturing Test. International Test Conference, 1996. 

14. D. Moundanos, J. Abraham, Y. Hoskote. Abstraction Techniques for Validation 
Coverage Analysis and Test Generation. IEEE Transactions on Computers, Vol. 47, 
1998. 

15. RM7000 Family User Manual. Issue 1, May 2001. 

16. MIPS64TM Architecture For Programmers. Revision 2.0. MIPS Tecnologies Inc., June 9, 
2003. 

17. A.S. Kossatchev, A.K. Petrenko, S.V. Zelenov, S.A. Zelenova. Application of Model-
Based Approach for Automated Testing of Optimizing Compilers. International 
Workshop on Program Understanding, 2003. 

18. A.V. Demakov, S.V. Zelenov, S.A. Zelenova. Generation of Structurally Complex Test 
Data with Respect to Context Constraints. Proceedings of Institute for System 
Programming of RAS, 2006 (In Russian). 


