
Methodology and Experience of Simulation-Based
Verification of Microprocessor Units Based on

Cycle-Accurate Contract Specifications
Mikhail Chupilko, Alexander Kamkin, and Dmitry Vorobyev

Software Engineering Department
Institute for System Programming of Russian Academy of Sciences

25, B. Kommunisticheskaya, Moscow, 109004, Russia
E-mail: �chupilko, kamkin, vorobyev�@ispras.ru

Abstract— In this paper we describe a methodology and ex-
perience of simulation-based verification of microprocessor units
based on cycle-accurate contract specifications. Such specifica-
tions describe behavior of a unit in the form of preconditions and
postconditions of microoperations. We have successfully applied
the methodology to several units of the industrial microprocessor.
The experience shows that cycle-accurate contract specifications
are very suitable for simulation-based verification, since, first,
they represent functional requirements on a unit in compre-
hensible declarative form, and second, they make it possible to
automatically construct test oracles which verify unit correctness.

I. INTRODUCTION

Microprocessors underlie all digital computer systems,
therefore reliability of a whole system is strongly depends
on the correctness of a microprocessor. The most commonly
used way to ensure functional correctness of a microprocessor
is a simulation-based verification of its register-transfer-level
(RTL) model [1], [2]. High cost of a bug and increasing design
complexity make functional verification a key component of
the microprocessor development cycle.

To improve the efficiency of verification it is performed not
only for a full-chip model, but for individual units as well.
Unit-level verification gives the following key advantages.
First and foremost, it provides observability and controllability
that is lacking at the chip level. Second, it allows to make early
verification of a microprocessor even before a full-chip model
is available [3]. It also should be emphasized that unit-level
verification provides significant return in terms of quantity and
quality of bugs removed [4].

The main task of functional verification is to check corre-
spondence between design under verification (DUV) behavior
and functional requirements. To have the ability to do it
automatically requirements should be represented in machine-
readable form. Such form of requirements representation is
usually called formal specifications or specifications for short.

In this work we consider specifications of a specific form,
so-called cycle-accurate contract specifications or contract
specifications of pipeline [5], [6]. Such specifications describe
behavior of a microprocessor unit in the form of preconditions
and postconditions of microoperations (parts of operations

which are executed over one clock cycle). Summarily, precon-
dition of microoperation formally determines when microoper-
ation is not interlocked; postcondition defines microoperation
functionality. Pair of precondition and postcondition is called
contract of microoperation.

In our opinion, cycle-accurate contract specifications are
very suitable for simulation-based verification. First, they
allow to represent functional requirements on a unit in com-
prehensible declarative form. Second, they make it possible to
automatically construct test oracles, which check conformance
of the unit behavior to the requirements described in the
specifications.

The rest of the paper is organized as follows. The second
section contains a description of the suggested methodology
of specification and verification of microprocessor units. In
the third section short review of the UniTESK technology and
the CTESK test development tool is given. This section also
comprises two specification examples. The next two sections
describes our experience. In the sixth section related work is
outlined. Finally, the seventh section concludes the paper.

II. CYCLE-ACCURATE CONTRACT SPECIFICATIONS

In this section we define cycle-accurate contract specifica-
tions and consider how they can be used for representation
of requirements and simulation-based verification of micro-
processor units. It should be noticed that we consider only
synchronous units, in which components are synchronized by
a clock signal.

A. Specification of Requirements

Operations implemented by a microprocessor unit are gener-
ally multi-cycle ones, i.e., they are executed by the unit during
several clock cycles. A part of an operation executed during
one clock cycle is called a microoperation.

The suggested methodology is based on contract speci-
fications in the form of preconditions and postconditions.
We propose to define contracts for separate microoperations
and to obtain the contract for the entire operation by means
of temporal composition of contracts. Here, under temporal

composition of contracts we mean a special mechanism that
in each cycle calculates a set of contracts to be fulfilled.

The process of specification of an operation can be outlined
as follows. First, a precondition restricting situations in which
the operation can be supplied for execution is determined.
Based on the analysis of the requirements, functional decom-
position of the operation into a set of microoperations is car-
ried out. For each microoperation a postcondition describing
requirements to it is defined. Then, the postcondition of each
microoperation is associated with the cycle at the end of which
it should be fulfilled. Thus, contract of the operation consisting
of � microoperations is formalized by the structure:

�������� � ���	
 �������
 ����
�
����

where ��	 is the precondition of the operation, ����� is the
postcondition of the �� microoperation, and �� is the number
of the cycle when the �� microoperation is executed.

For the purpose of clearness hereinafter we consider such
operations, that their microoperations are executed sequen-
tially, i.e., �� � �
 ���
 �� � �. This assumption does not restrict
the generality. In this case contract of the operation consisting
of � microoperations is given by the formula:

�������� � ���	
 �������
�
�����

For the contract � we introduce the following notation.
The precondition of the operation is denoted as ��	� ; the
postcondition of the �� microoperation is denoted as ������ .

B. Verification of Requirements

Suppose that at some moment of time the unit under
verification performs � operations ��
 ���
 �� that have been
supplied for execution ��
 ���
 �� cycles earlier, respectively.
Let ��
 ���
 �� be contracts of the operations ��
 ���
 ��,
respectively, and let, at the moments when the operations
��
 ���
 �� were supplied, the preconditions ��	��

 ���
 ��	��
have been fulfilled. Then, to verify correctness of the unit
behavior at the given moment of time it is required to check
satisfiability of the predicate called test oracle:

�����	���
 ��� ������
 ��� �

��

���

������
��
�

Test oracle organization for pipelined operations is illustrated
in Fig. 1. In the first cycle of simulation operation � is
started. Then, one cycle later operation � is supplied for
execution. At the end of the second cycle both postcondition
of microoperation �� and postcondition of microoperation ��

should be fulfilled.

C. Specification of Interlocks

In the previous section we have considered operations
in which cycles when microoperations are executed were
statically fixed. Some units of microprocessors are more
complicated. In general case there are dependencies between
operations. So, execution of an operation is suspended until
all necessary data is prepared and all required resources
are deallocated by the previous operations. Requirements on

A1 A2 ... An

postA2 /\ postB1

current cycle cycles

Operation A

Operation B B1 B2 ... Bn

Test Oracle

Fig. 1. Test oracle for pipelined operations.

such operations are specified with the help of the following
contracts:

�������� � ���	
 ����	�
 �������
�
����

where ��	 is the precondition of operation, ��	� is the guard
condition1 of the �� microoperation, and ����� is the postcon-
dition of the �� microoperation.

To verify such requirements testbench should keep track
which microoperations are finished and check corresponding
postconditions. As it was said before, a special mechanism that
in each cycle of simulation calculates a set of postconditions
to be checked is called temporal composition of contracts.
Formal description of temporal composition mechanism can
be found in papers [5] and [6].

D. Formalization of Requirements

Development of formal specifications can not be done if
requirements are not formulated clear enough. Development of
cycle-accurate specifications demands additional clearness and
exactness from the requirements. They should specify not only
constraints on input and output signals of microoperations,
but temporal constraints restricting cycles in which microop-
erations are executed as well. Such requirements are called
cycle-accurate requirements.

Experience shows that original documentation that cus-
tomers give along with RTL model of a unit should be supple-
mented, refined, and structured before it becomes suitable for
formalization. Usually such descriptions say how test system
can act upon a unit, but they do not distinctly say how test
system can verify unit correctness. Typical documentation of
a unit for each operation specifies a set of actions performed
by the unit. This set is generally incomplete, and it is not clear
how many cycles are required for execution of the actions.

As it was said before, original documentation should be
supplemented and altered. To do it, we suggest using a special
form of requirements representation, so-called catalogue of
requirements or catalogue for short. We distinguish four types
of requirements to an operation:

� pre requirements – requirements on operation precondi-
tion;

� guard requirements – requirements on microoperation
guard condition;

1Guard condition is a negation of interlock condition, i.e. microoperation
is interlocked, if and only if the corresponding guard condition is false.

TABLE I

TABLE OF REQUIREMENTS.

Operation Microoperation� ... Microoperation�
Pre Guard ... Guard

...

... Update ... Update

...

... Post ... Post

...

� update requirements – implicit requirements on microop-
eration functionality;

� post requirements – explicit requirements on microoper-
ation functionality.

For each operation catalogue contains a table combining
requirements on this operation. Operation consisting of �

microoperations is represented by the table with ��� columns
(see Table I). The first column corresponds to operation
precondition, while the others are connected with microop-
erations. Each cell of the table contains a requirement. It is
implied that one requirement defines constraints on input and
output signals within one clock cycle. All requirements are
divided into four groups depending on their types.

The process of catalogue compiling is as follows. At the first
step requirements on functionality (update requirements and
post requirements) are defined. The difference between update
and post requirements is that update requirements imperatively
define how microoperation updates the state of the unit, while
post requirements declaratively describe the expected result of
the microoperation. Pre requirements and guard requirements
are usually refined when test experiments have begun.

It should be emphasized that compiling of catalogue is gen-
erally done in active co-operation with customer. Compiling
takes additional labor time, but it shrinks specification devel-
opment and considerably simplifies support of specifications
and tests. Catalogue is also very useful for developers, because
it gives them high-quality documentation.

III. UNITESK TECHNOLOGY

The UniTESK technology [7], [8] was developed at the
Institute for System Programming of Russian Academy of
Sciences (ISPRAS) [9]. The UniTESK technology and sup-
porting tools have been successfully applied for functional
testing of different kinds of software (operating systems,
telecommunication protocols, real-time systems, etc.). A key
moment in the successful use of the UniTESK technology is
the flexible and scalable test system architecture, which allows
to adapt the technology to various classes of systems [8].

A. UniTESK Test System Architecture

UniTESK test system architecture has been developed as a
result of many years experiments on specification-based testing
of the industrial software from different fields and of different
levels of complexity [7], [8]. These experiments have allowed

UniTESK Test System

Test Engine

Mediator

Test Oracle Test Action
Iterator

Test
Trace

Reports DUV

Fig. 2. UniTESK test system architecture.

to create the flexible and scalable test system architecture.
Interactions of UniTESK test system components are shown
in Fig. 2.

Test engine is a library component of the UniTESK test
system. Test engine and test action iterator are intended for
test sequence generation. Test engine is based on an FSM
traversal algorithm.

Test action iterator works under the test engine control. It
calculates current FSM state, iterates corresponding stimuli,
and applies them. Test action iterator is automatically gener-
ated from the high-level test scenario description.

Test oracle verifies the DUV behavior in response to a
single stimulus. It is automatically constructed from the formal
specifications.

Mediator connects formal specifications and DUV imple-
mentation. It makes some transformations of the stimuli and
reactions and also synchronizes the specification state with the
implementation one.

Test trace shows the events happening during the testing.
It is used by the UniTESK supporting tools to automatically
generate different reports that help in the test results analysis.

B. CTESK Test Development Tool

CTESK test development tool is an implementation of the
UniTESK conception for the C programming language. It uses
SeC (specification extension of C) language to develop test
system components. SeC language provides test developers
with special functions:

� specification functions – to specify DUV operations and
to define functional coverage structure;

� mediator functions – to connect specification functions
with corresponding stimuli;

� function of FSM state calculation – to calculate FSM state
on the base of the specification state;

� scenario functions – to define a set of stimuli to be
applied in each of the reachable states.

We have adapted the CTESK tool for functional verification
of Verilog and SystemC designs [10]. Further we consider the
use of CTESK for specification development by the examples
of two simple units.

C. Specification Example: Floating-Point Adder

To illustrate basic ideas of the suggested approach let us
consider an example of a 3-stages floating-point adder. The
adder is intended for adding two normalized floating-point

numbers (zero values are also permitted) [11]. The operation
consists of three microoperations (stages): (1) alignment of
exponents, (2) addition of fractions, and (3) normalization of
result.

The first step of operation specification is the definition of
so-called operation context type that describes the current state
of the operation execution. This type usually contains operands
of the operation and all kinds of temporal values calculated
on one stage to be used on the successive stages.

// Context of ADD operation

specification typedef struct ADDContextT �

// Operation operands

bool op1 sign;

uint8 t op1 exponent;

uint32 t op1 fraction;

...

� ADDContextT;

The specification function of the operation contains operation
precondition.

// Specification function of ADD operation

specification void ADD spec(SingleT op1, SingleT op2) �

// Operation precondition

pre �

return (isZero(op1) � isNormalized(op1))

&& (isZero(op2) � isNormalized(op2));

�

�

For each stage of the operation a special function is developed
to set forth stage requirements. Consider specification of the
following requirement on the alignment stage: “If operands
have different exponents, then fraction of the operand with
the smaller exponent is shifted to the right (the number of
positions that the bits in the fraction are to be shifted is
the difference between exponents). If there is a unit among
the shifted bits, then output inexact align is set to high;
otherwise, it is set to low”.

// Specification of the alignment stage

reaction ADDContextT* ADD align spec(void) �

AdderUnitT *adder unit = getAdderUnit();

ADDContextT *add = ADD align spec;

// Postcondition of the stage

post �

int shift = abs(add-�op1 exponent -

add-�op2 exponent);

if(add-�op1 exponent � add-�op2 exponent) �

return adder unit-�inexact align ==

(add-�op2 fraction & mask(shift)) != 0;

�

...

�

�

In the code above �	����	���� is a function that returns
specification representation of the adder state.

D. Specification Example: Translation Lookaside Buffer

Hereafter we consider specification of a simplified version
of translation lookaside buffer (TLB). TLB is a buffer in a
microprocessor that is used for address translation. TLB has
a fixed number of entries containing part of the page table,
which translates virtual addresses into physical ones.

The memory of the TLB under verification comprises three
buffers: an instruction micro TLB (ITLB), a data micro
TLB (DTLB) and a joint TLB (JTLB). The purpose of the
micro TLBs is to allow two address translation operations to
be performed simultaneously – one for an instruction fetch
address (via the ITLB) and one for a data load/store address
(via the DTLB).

Translation of address is performed by two microoperations
(stages): (1) access to micro TLB (ITLB or DTLB), and
(2) access to JTLB. Virtual address of data (instruction) is
propagated via input � �� (��). The outputs of the unit are
the following:

� � ���� �	� (���� �	�) – request to JTLB from data
(instruction) address translation operation;

� � �� (��) – physical address of data (instruction);
� ���� �� – JTLB hit.
Consider the following requirements on the JTLB access

stage of the instruction address translation operation: (1) “if
an entry for the given virtual address is found in the JTLB,
then ���� �� is set to high; otherwise, it is set to low”; (2)
“if TLB hit (ITLB hit or JTLB hit) is occurred, then ��

is set to the physical address corresponding to the virtual
address”; (3) “when two address translation operations (one
for an instruction fetch and one for a data load/store) try
to access JTLB simultaneously, the operation of data address
translation gets a priority; execution of the instruction address
translation operation is interlocked”. These requirements can
be formalized as follows.

// Specification of the JTLB access stage

reaction ITranContextT* ITRAN jtlb access spec(void) �

TLBUnitT *tlb unit = getTLBUnit();

ITranContextT *itran = ITRAN jtlb access spec;

// Precondition of the stage

pre �

Process *process = getProcess StimulusID(

tlb unit-�pipe, DTRAN, JTLB ACCESS);

// Specification of requirement (3)

return process == NULL;

�

// Postcondition of the stage

post �

if(!isJTLBHit TLB(tlb unit, itran-�i va)) �

// Specification of requirement (2)

return tlb unit-�jtlb hit && tlb unit-�i pa ==

translateAddress TLB(tlb unit, itran-�i va);

� else �

// Specification of requirement (1)

return !tlb unit-�jtlb hit;

�

�

...

�

In the code above �� �������	��� is a context of the
instruction address translation, and �	� ���	�� !��"�"��#
is a CTESK library function that returns information on
executing operations.

IV. CASE STUDY: TRANSLATION LOOKASIDE BUFFER

The suggested approach was applied to TLB of the in-
dustrial microprocessor with MIPS64-compatible architec-
ture [15]. This section outlines our experience and the achieved
results.

A. Description of TLB

The memory of the TLB under verification comprises three
buffers: a 4-entries instruction micro TLB (ITLB), a 4-entries
data micro TLB (DTLB), and a large 64-entries joint TLB
(JTLB). If an entry is not found in the corresponding micro
TLB, then the JTLB is accessed. Once the entry is retrieved,
it is written back to the micro TLB. To refill micro TLBs
the least-recently-used (LRU) strategy is used – micro TLBs
always replace the entry which has not been accessed for the
longest amount of time. Thus, micro TLBs contain a subset
of translations that are most-recently-used.

The TLB implements the following operations:

� read entry – reads entry from the buffer;
� write entry – writes entry to the buffer;
� probe entry – probes if the entry exists in the buffer.
� translate data address – translates virtual address of data;
� translate instruction address – translates virtual address

of instruction;

Address translation operations are organized as multi-cycle
pipelined operations. A micro TLB miss sequence has a
penalty of one extra clock cycle. If we have simultaneous
ITLB miss and DTLB miss, the DTLB gets first priority when
accessing the JTLB, and the translation of instruction address
stalls an additional cycle, giving a total penalty of two latency
cycles.

The interface of the TLB under verification contains about
30 inputs and as many outputs. The RTL model of the TLB
is implemented in Verilog. The main part of the source code
consumes about 3.5 KLOC.

B. Specification and Verification of TLB

A total number of the requirements that we have specified
is about 100. TLB requirements partitioning is shown in
Table II. Requirements on each operation were represented
in the form of cycle-accurate contract specifications. It should
be emphasized that all requirements were cheaply formalized.

TABLE II

TLB REQUIREMENTS.

Operation Pre Guard Update Post Total

Read 5 0 0 2 7

Write 5 0 2 2 9

Probe 5 0 0 3 8

Translate

Data Address
5 0 3 30 38

Translate

Instruction Address
5 3 2 27 37

Total 25 3 7 64 99

The volume of specifications consumes about 2.5 KLOC in
SeC language.

We have found 9 errors in the TLB implementation includ-
ing critical ones. It should be noticed that all errors were found
in address translation operations and the majority of errors are
connected with the control logic of the unit. The total labor
costs of the testbench development make up to about 2.5 man-
months.

C. Reuse of TLB Specifications

After we have verified TLB (v2.0) we started testbench
development for the next version (v3.0). We tried to reuse
specifications developed for TLB v2.0 for the verification of
TLB v3.0. In this section we consider which modifications of
specifications were done and which percentage of reuse was
achieved.

The most changes were concentrated in read, write, and
probe operations. In TLB v3.0 width of the output bus is twice
smaller than in TLB v2.0, therefore reading is twice longer
(two stages instead of one). Operations of writing and probing
have been prolonged as well. Address translation operations
have not been changed too much.

Modifications of specifications were of the following kinds:
modification of precondition, modification of guard condition,
addition of microoperation, addition of requirement, and redis-
tribution of requirements between different microoperations.
In case of read operation, one requirement was split into three
constraints. One of them ought to be fulfilled at the end of
the both stages; the others are distributed among the stages.
So, one requirement on TLB v2.0 was split into the four
requirements on TLB v3.0.

In sum, number of requirements on TLB v3.0 was increased
by 14 (we do not take into account splitting of the requirement
in the read operation). Besides, 16 requirements on the oper-
ation preconditions were changed. Percentage of code reuse
consumes more than 50% (if even one line of the specification
function has been changed, the whole function is considered
as non-reusable). All modifications affect less than 20% of the
code. Labor costs of modifications are about 1 man-week.

V. CASE STUDY: L2 CACHE

In this section we describe our up-to-the-minute experience
that was obtained in the project of L2 cache verification. L2
cache is the most complex unit that we have specified and
verified.

A. Description of L2 Cache

The L2 cache under verification is a direct-mapped 256 KB
cache that consists of 8192 rows. Each row contains data (four
64-bit double words), tag (18 upper bits of physical address),
and control bits ($ – Valid and % – Writeback). The cache
serves both data and instructions. The microprocessor supports
direct memory access (DMA) to the cache via load/store
instructions when operating in digital signal processing (DSP)
mode.

The L2 cache implements the following operations:
� load data – reads data from the L2 cache;
� load instruction – reads instruction from the L2 cache;
� store data – stores data into the L2 cache;
� cache operation – modifies data, tags, and control bits;
� load data(DSP mode);
� store data(DSP mode).
If L2 miss occurs when executing a load data operation,

then, if it is necessary (control bit % is set in the cache row),
write-back is performed, after that required row is read from
the memory. If hit occurs when executing store operation,
then data are written into the cache row and control bit %
is set. Processing of the miss for the store operation is the
same as for load operations. We should mention the following
particular feature of the store operation. It consists of two
parts: preliminary request on data retention, which can be
canceled by interrupt signal, and acknowledgement of data
retention.

Cache operation unifies six completely different sub-
operations: index writeback invalidate, index load tag, index
store tag, hit invalidate, hit writeback invalidate, and hit
writeback [15].

All operations implemented by the unit are multi-cycle
pipelined operations. Pair of store operations can be executed
sequentially one by one. The L2 cache can not start oper-
ation execution if it handles operation that causes L1 miss.
Operations for data and operations for instructions can be
supplied for execution simultaneously, but operations for data
have a priority. The other operations (cache control operation,
load/store in DMA mode, etc.) can not be started until the unit
finishes the execution of the previous operations.

The interface of the L2 cache under verification contains
about 70 inputs and 30 outputs. The RTL model of the cache
is implemented in Verilog. The source code of the model
consumes about 3 KLOC.

B. Specification and Verification of L2 Cache

A total number of the requirements that we have specified
is about 180. Requirements partitioning is shown in Table III.
The volume of specifications consumes about 3 KLOC in SeC
language.

TABLE III

L2 CACHE REQUIREMENTS.

Operation Pre Guard Update Post Total

Load Data 4 10 7 3 24

Load Instruction 2 5 0 2 9

Store Data 6 13 77 15 111

Cache Operation 5 3 20 6 34

Load Data (DSP) 1 0 0 1 2

Store Data (DSP) 1 0 1 0 2

Total 19 31 105 27 182

When we were developing specifications for L2 cache we
have confronted with two particular features of the unit. The
first one is that processing of operations depends on many
factors (L2 hit/miss, interruptions, control bits, etc.). We have
distinguished about 25 different functional branches. The other
feature is the existence of nonatomic test actions. It means that
testbench should provide the unit with additional data during
the operation execution. It was simply implemented by the
mediators of microoperations.

We have found 3 critical errors in the L2 cache implemen-
tation. Two errors relate to cache operation, and one error
affects instruction loading operation. The total labor costs of
the testbench development make up to about 4 man-months.

VI. RELATED WORK

The means of specification used in modern hardware veri-
fication languages (HVLs), like OpenVera [12], SystemVer-
ilog [13], etc., are based on temporal logics [14]. HVLs
operate with limited sequences of events, for which it is
possible to address both the past and the future. From simple
sequences one can construct more complicated ones using
logical operations �&# and �' or by means of regular
expressions.

In the approaches based on temporal logics the focus is
placed on temporal decomposition of operations. For each op-
eration its temporal structure (admissible sequences of events
and delays between them) is first determined. Then, the pred-
icates describing separate events are defined. In our approach,
the focus is placed on functional decomposition of operations.
First, functional structure of the operation, i.e., the set of
microoperations, is determined. Then, each microoperation is
specified, and temporal composition is carried out.

We assume that the functional structure of an operation is
more stable compared to the temporal structure. Hence, the
approaches based on the functional decomposition of opera-
tions make it possible to develop specifications that are more
robust with respect to modifications of the implementation
compared to the approaches based on the temporal logics. The
advantageous features of the proposed approach are also its
clarity and simplicity. The preconditions and postconditions
are usually simpler than temporal logic formulas and do not
require special knowledge from the test developer.

VII. CONCLUSION

The need of automated testbench development for micro-
processor units is widely recognized. It is clear that high-level
automation can not be achieved without using formal specifica-
tions, which describe unit behavior in machine-readable form.
The paper described the methodology to formal specification
of microprocessor units which is suitable for simulation-based
verification. The approach is based on cycle-accurate contract
specifications in the form of preconditions and postconditions
of microoperations. The methodology is supported by the
CTESK test development tool from the UniTESK toolkit.

We have successfully applied our approach to several units
of the industrial MIPS64-compatible microprocessor. The ap-
probation has demonstrated effectiveness and relatively low
labor costs of testbench development with the aid of cycle-
accurate contract specifications and the UniTESK technology.
We have found a number of bugs in the implementation of
the units that had not been discovered earlier at the chip level;
there are some critical bugs among them.

We consider the methodology to be very useful for func-
tional verification of microprocessors at the unit-level. Now
we are planning to generalize our approach for branching
pipelines, pipelines with cycles, etc. The other thing that we
are going to do is the development of tools that improve test
result analysis and simplify design of specifications and tests.

REFERENCES

[1] J. Bergeron. Writing Testbenches: Functional Verification of HDL Models.
Kluwer Academic Publishers, 2000.

[2] W. Lam. Hardware Design Verification: Simulation and Formal Method-
Based Approaches. Prentice Hall, 2005.

[3] B. Bentley. Validating the Intel Pentium 4 Microprocessor. DAC’2001:
Design Automation Conference, 2001.

[4] J.M. Ludden, W. Roesner, G.M. Heiling, J.R. Reysa, J.R. Jackson, B.-
L. Hui, M.L. Behm, J.R. Baumgartner, R.D. Peterson, J. Abdulhafiz,
W.E. Bucy, J.H. Klaus, D.J. Klema, T.N. Le, F.D. Lewis, P.E. Milling,
L.A. McConville, B.S. Nelson, V. Paruthi, T.W. Pouarz, A.D. Romonosky,
J. Stuecheli, K.D. Thompson, D.W. Victor, and B. Wile. Functional Ver-
ification of the POWER4 Microprocessor and POWER4 Multiprocessor
Systems. Volume 46, Number 1, 2002.

[5] A. Kamkin. Contract Specification of Pipelined Designs: Application
to Testbench Automation. SYRCoSE’2007: The �

�� Spring Young Re-
searchers Colloquium on Software Engineering, 2007.

[6] A. Kamkin. Testbench Automation for Pipelined Designs Based on
Contract Specifications. IEEE-EWDTS’2007: The �

�� East-West Design
& Test Symposium, 2007.

[7] http://www.unitesk.com
[8] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko. UniTESK

Test Suite Architecture. FME’02: Formal Methods Europe. LNCS 2391,
Springer-Verlag, 2002.

[9] http://www.ispras.ru
[10] A. Kamkin. The UniTESK Approach to Specification-Based Validation

of Hardware Designs. ISoLA’06: The �
�� International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation,
November 2006.

[11] IEEE 754-1985. IEEE Standard for Binary Floating-Point Arithmetic.
NY: IEEE, 1985.

[12] http://www.open-vera.org
[13] http://www.systemverilog.org
[14] S. Edwards. Design and Verification Languages. Technical Report, New

York, Columbia University, 2004.
[15] MIPS64 Architecture For Programmers. Revision 2.0. MIPS Tecnologies

Inc., June 9, 2003.

