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Abstract 

 

In this paper we describe a method for simulation-
based verification of microprocessor units based on 
cycle-accurate contract specifications. Such 
specifications describe behavior of a unit in the form 
of preconditions and postconditions of 
microoperations. Test sequence generation is based on 
traversal of FSM constructed automatically from 
specifications and test coverage definition. We have 
successfully applied the method to several units of the 
industrial MIPS64-compatible microprocessor. 
 

1. Introduction 
 

Microprocessors play an important role in present-
day life. They underlie all digital computer systems 
including safety-critical ones, such as airplanes control 
systems, medical systems of life support, etc. The most 
commonly used way to ensure functional correctness 
of a microprocessor is a simulation-based verification 
of its register-transfer-level (RTL) model [1]. High 
cost of a bug, increasing design complexity, and 
shrinking time to market make functional verification a 
key component of the microprocessor development 
cycle. 

To improve the efficiency of verification it is 
performed not only for a full-chip model, but for 
individual units as well. Unit-level verification gives 
the following key advantages. First and foremost, it 
provides observability and controllability that is 
lacking at the chip level. Second, it allows to make 
early verification of a microprocessor even before a 
full-chip model is available [2]. It also should be 
emphasized that unit-level verification provides 
significant return in terms of quantity and quality of 
bugs removed [3]. 

Nowadays, it is next to impossible to develop high-
quality tests for a microprocessor manually. Moreover, 

it is impracticable to develop tests for a sufficiently 
complex unit of a microprocessor. The need of 
automated testbench development technologies is 
widely recognized. Development of such technologies 
and supporting tools has separated to a special branch 
of electronic design automation (EDA) industry which 
is known as testbench automation. 

In this work we consider a method of simulation-
based verification of microprocessor units based on 
cycle-accurate contract specifications. Such 
specifications describe behavior of a unit in the form 
of preconditions and postconditions of 
microoperations. They allow to represent cycle-
accurate requirements in comprehensible declarative 
form and to automate simulation-based verification. 

The rest of the paper is organized as follows. The 
second section describes the suggested approach to 
formal specification of microprocessor units. In the 
third section application of cycle-accurate 
specifications to simulation-based verification is 
considered. In the fourth section related work is 
outlined. The fifth section describes our experience in 
functional verification of microprocessor units. 
Finally, the sixth section concludes the paper. 
 

2. Specification of Microprocessor Units 
 

Operations implemented by microprocessor units 
are generally multi-cycle ones, i.e., they are executed 
during several clock cycles. A part of an operation 
executed during one clock cycle is called a 
microoperation. 

The suggested approach to testbench automation is 
based on contract specifications in the form of 
preconditions and postconditions. We propose to 
define contracts for separate microoperations and to 
obtain contract for the entire operation by means of 
temporal composition of contracts. Here under 
temporal composition we mean a special mechanism 



that in each cycle of simulation calculates a set of 
contracts to be fulfilled. 

The process of specification of an operation can be 
outlined as follows. First, a precondition restricting 
situations in which the operation can be supplied for 
execution is determined. Based on the analysis of the 
requirements, functional decomposition of the 
operation into a set of microoperations is carried out. 
For each of them a postcondition describing 
corresponding requirements is defined. Then, the 
postcondition is associated with the cycle when it 
should be fulfilled. Thus, contract of the operation 
consisting of n microoperations is formalized by the 
structure: 

Contract = 〈pre, {(posti, τi)}i=1,n〉, 
where pre is the precondition of the operation, posti is 
the postcondition of the ith microoperation, and τi is the 
number of the cycle when the ith microoperation is 
executed. 

For the purpose of clearness hereinafter we assume 
that microoperations are executed sequentially, i.e., 
τ1 = 1, …, τn = n. This assumption does not restrict the 
generality. In this case contract of an operation 
consisting of n microoperations is given by the 
formula: 

Contract = 〈pre, {posti}i=1,n〉. 
Previously we have considered operations in which 
cycles when microoperations are executed were 
statically fixed. Some units of microprocessors are 
more complicated. In general case there are 
dependencies between operations. So, execution of an 
operation is suspended until all necessary data is 
prepared and all required resources are deallocated by 
the previous operations. Requirements on such 
operations are specified with the help of the following 
contracts: 

Contract = 〈pre, {(prei, posti)}i=1,n〉, 
where pre is the precondition of operation, prei is the 
guard condition of the ith microoperation, and posti is 
the postcondition of the ith microoperation. Guard 
condition is a negation of interlock condition, i.e., 
microoperation is interlocked, if and only if the 
corresponding guard condition is false. 
 

3. Verification of Microprocessor Units 
 

In this section we consider how cycle-accurate contract 
specifications can be applied for simulation-based 
verification of microprocessor units. 
 
 

3.1. Checking Correspondence between 
Specification and Implementation 
 

For operation x we introduce the following 
notation. The precondition of the operation is denoted 
as pre(x); the guard condition of the ith microoperation 
is denoted as pre(x, i); the postcondition of the ith 
microoperation is denoted as post(x, i); and, finally, the 
number of microoperations in the operation is denoted 
as L(x). 

Suppose that at some moment of time the unit 
under verification performs m operations x1, …, xm 
(without interlocks) that have been supplied for 
execution τ1, …, τm cycles earlier, respectively. Let at 
the moments when the operations were supplied, the 
preconditions pre(x1), …, pre(xm) have been fulfilled. 
Then, to verify correctness of behavior at the given 
moment of time it is required to check satisfiability of 
the predicate called test oracle: 

Oracle({(xi, τi)}i=1,m) = ∧ post(xi, τi). 
Test oracle organization is illustrated in Fig. 1. In the 
first cycle of simulation operation A is started. Then, 
one cycle later operation B is supplied for execution. 
At the end of the second cycle both postcondition of 
microoperation A2 and postcondition of microoperation 
B1 should be fulfilled. 

 
Fig 1. Execution of two operations. 

To verify operations with interlocks, testbench 
should keep track which microoperations are finished 
and check corresponding postconditions. As it was 
said before, a special mechanism, called temporal 
composition of contracts, is used for this purpose. 
Formal description of the mechanism can be found in 
paper [4]. General idea is the following. Contract 
specifications of a unit are interpreted as extended 
finite state machine (EFSM) [4]. State of the EFSM is 
a set of pairs (x, l), where x is an identifier of operation 
(stimulus), and l is the number of microoperation 
(stage). Suppose that at some moment of time state of 
EFSM is π = {(xi, li)}i=1,m and testbench is starting 
execution of operation x (guard condition and 
postcondition of the operation are fulfilled). Then, the 
state is changed in the following way: 



{(x, 1)} ∪          (1) 
π’ =  {(xi, li) | pre(xi, li) = false} ∪        (2) 

{(xi, li + 1) | pre(xi, li) = true ∧ li < L(xi)}  (3). 

Intuitive significance of this formula is quite simple: 
new pair (x, 1) is added to the state (1); if 
microoperation is interlocked, then its stage is not 
changed (2); if microoperation is not interlocked (3), 
then its stage is increased. Test oracle for the transition 
is calculated as the conjunction of postconditions 
associated with executed microoperations: 

Oracle(π) = ∧ {post(xi, li) | pre(xi, li) = true}. 
 

3.2. Test Coverage Definition 
 

In the suggested method test coverage for a unit is 
described with the help of test situations and 
dependencies. Test situation is a predicate that 
constrains arguments of an operation and a state of a 
unit. Test situation describes event that is interesting 
for testing (exception, cache miss, etc.). Dependency 
restricts arguments for a pair of operations. Usually 
dependencies have an influence on operation 
interlocks. 

We use constructive definition of test coverage that 
allows testbench to automatically construct arguments 
of operations during test sequence generation: test 
situations and dependencies are supplied with special 
functions called constructors that totally or partially 
construct arguments of the corresponding operations. 
When applying operation for a given test situation and 
a given set of dependencies, testbench calculates 
arguments of the operation as a composition of values 
generated by corresponding constructors (test situation 
and dependencies should not contradict each other). 

We develop constructors manually, but they can be 
generated automatically using constraint solving 
techniques. Currently we are doing research and 
development in this field and planning to implements a 
prototype of the test generation tool in the short run. 
 

3.3. Test Sequence Generation 
 

When test coverage of a unit is specified, the goal 
of the unit verification can be defined formally as 
covering all feasible generalized states of the unit 
EFSM. Generalized state is a set of elements 
(x[s, d], l), where x is a stimulus, s is a test situation, d 
is a set of dependencies that connect x with previously 
launched operations (which are also presented in this 
state), and l is a stage. Stimulus x labeled by s and d is 
called generalized stimulus. 

To achieve the goal of verification we use 
irredundant algorithms for traversing directed graphs 
[5]. Usually generalized state graphs are deterministic 
(assume that dependencies determine interlocks) and 
strongly connected, therefore we can apply such kind 
of algorithms. The important feature of irredundant 
algorithms is that they operate with graphs defined 
implicitly by function that for each node calculates a 
set of possible stimuli. Such approach goes very well 
with contract specifications (see Fig. 2). 

 
Fig 2. Generalized state graph. 

It should be noticed that precondition satisfiability 
must be determined on the base of generalized state. 
To meet this requirement verification engineer ought to 
manually supplement state with additional information, 
if it is needed. 
 

4. Related Work 
 

There are a lot of articles dedicated to methods of 
microprocessor verification. Many researchers come to 
a consensus that model-based test generation is the 
right direction for simulation-based verification of 
microprocessors. The main question is which models 
and notations should be used. 

Existing approaches utilize explicit cycle-accurate 
models to generate test sequences, e.g., Ur et al. [6] 
and Mishra et al. [7-10] use SMV models; Ho et al. 
[11] utilize Synchronous Murϕ. The main differences 
between approaches are concentrated in the following 
methods: 

• method of constructing a model: 
o manual development [6]; 
o automatic derivation from RTL [11]; 
o automatic derivation from specifications [8,*1]. 

• method of test sequence generation: 
o state graph traversal techniques [6,11]; 
o model checking techniques [7-10,*]. 

It should be emphasized that manual development 
of a model for test sequence generation is error-prone, 
while automatic derivation from RTL description does 
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not scale well on complex designs. We think that the 
most perspective method of model construction is 
automatic extraction from formal specifications and 
test coverage definition.  

Model checking techniques are not intended for 
full-scale functional verification. They are aimed to 
verify relatively small number of properties and to 
generate counter-examples if properties are violated. 
The most usable way of test sequence generation based 
on state graph traversal. 

In the suggested method model for test sequence 
generation (generalized state graph) is automatically 
derived from specifications and test coverage 
definition; test sequence generation is based on state 
graph traversal techniques. The distinction feature of 
the approach is that it utilizes implicit (declarative) 
specifications for description of behavior and 
irredundant algorithms for state graph traversal. We 
believe that use of implicit models increases the 
scalability of the approach. 
 

5. Case Studies 
 

The suggested approach was applied to translation 
lookaside buffer (TLB) and to L2 cache of the 
industrial MIPS64-compatible microprocessor [12]. 

The RTL model of the TLB is implemented in 
Verilog. The source code of the model (without 
libraries) makes up to 3.5 KLOC. All functional 
requirements (about 100) have been formalized by 
cycle-accurate contract specifications; tests have been 
developed according to the suggested method. The 
volume of specifications and tests is about 3.5 KLOC 
in SeC language, which is a specification extension of 
C. The total labor costs of testbench development are 
about 2.5 man-months. We have found more than 10 
errors in the TLB implementation including very 
critical ones. 

The RTL model of the L2 cache is also developed 
in Verilog. The volume of the unit source code is about 
3.0 KLOC. In this project we have specified about 170 
functional requirements. The volume of specifications 
and tests makes up to 4.7 KLOC in SeC. The labor 
costs of testbench development are about 4.0 man-
months. Testbench has discovered 3 errors. 
 

6. Conclusion 
 

The need of automated testbench development for 
microprocessor units is widely recognized. The paper 
described the method of coverage-directed verification 
of microprocessor units that is based on cycle-accurate 
contract specifications. We have successfully applied 
our approach to several units of the industrial MIPS64-

compatible microprocessor. Critical bugs were found 
in the implementation of the units that had not been 
discovered earlier at the chip level. 

We consider the method to be very useful for 
functional verification of microprocessors at the unit-
level. Now we are planning to generalize our approach 
for branching pipelines, pipelines with cycles, etc. The 
other thing that we are going to do is the development 
of tools that improve test result analysis and simplify 
design of specifications and tests. 
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