
Coverage-Directed Verification of Microprocessor Units Based on
Cycle-Accurate Contract Specifications

Alexander Kamkin
Software Engineering Department

Institute for System Programming of Russian Academy of Sciences
25, B. Kommunisticheskaya, Moscow, 109004, Russia

E-mail: kamkin@ispras.ru

Abstract

In this paper we describe a method for simulation-
based verification of microprocessor units based on
cycle-accurate contract specifications. Such
specifications describe behavior of a unit in the form
of preconditions and postconditions of
microoperations. Test sequence generation is based on
traversal of FSM constructed automatically from
specifications and test coverage definition. We have
successfully applied the method to several units of the
industrial MIPS64-compatible microprocessor.

1. Introduction

Microprocessors play an important role in present-
day life. They underlie all digital computer systems
including safety-critical ones, such as airplanes control
systems, medical systems of life support, etc. The most
commonly used way to ensure functional correctness
of a microprocessor is a simulation-based verification
of its register-transfer-level (RTL) model [1]. High
cost of a bug, increasing design complexity, and
shrinking time to market make functional verification a
key component of the microprocessor development
cycle.

To improve the efficiency of verification it is
performed not only for a full-chip model, but for
individual units as well. Unit-level verification gives
the following key advantages. First and foremost, it
provides observability and controllability that is
lacking at the chip level. Second, it allows to make
early verification of a microprocessor even before a
full-chip model is available [2]. It also should be
emphasized that unit-level verification provides
significant return in terms of quantity and quality of
bugs removed [3].

Nowadays, it is next to impossible to develop high-
quality tests for a microprocessor manually. Moreover,

it is impracticable to develop tests for a sufficiently
complex unit of a microprocessor. The need of
automated testbench development technologies is
widely recognized. Development of such technologies
and supporting tools has separated to a special branch
of electronic design automation (EDA) industry which
is known as testbench automation.

In this work we consider a method of simulation-
based verification of microprocessor units based on
cycle-accurate contract specifications. Such
specifications describe behavior of a unit in the form
of preconditions and postconditions of
microoperations. They allow to represent cycle-
accurate requirements in comprehensible declarative
form and to automate simulation-based verification.

The rest of the paper is organized as follows. The
second section describes the suggested approach to
formal specification of microprocessor units. In the
third section application of cycle-accurate
specifications to simulation-based verification is
considered. In the fourth section related work is
outlined. The fifth section describes our experience in
functional verification of microprocessor units.
Finally, the sixth section concludes the paper.

2. Specification of Microprocessor Units

Operations implemented by microprocessor units
are generally multi-cycle ones, i.e., they are executed
during several clock cycles. A part of an operation
executed during one clock cycle is called a
microoperation.

The suggested approach to testbench automation is
based on contract specifications in the form of
preconditions and postconditions. We propose to
define contracts for separate microoperations and to
obtain contract for the entire operation by means of
temporal composition of contracts. Here under
temporal composition we mean a special mechanism

that in each cycle of simulation calculates a set of
contracts to be fulfilled.

The process of specification of an operation can be
outlined as follows. First, a precondition restricting
situations in which the operation can be supplied for
execution is determined. Based on the analysis of the
requirements, functional decomposition of the
operation into a set of microoperations is carried out.
For each of them a postcondition describing
corresponding requirements is defined. Then, the
postcondition is associated with the cycle when it
should be fulfilled. Thus, contract of the operation
consisting of n microoperations is formalized by the
structure:

Contract = 〈pre, {(posti, τi)}i=1,n〉,
where pre is the precondition of the operation, posti is
the postcondition of the ith microoperation, and τi is the
number of the cycle when the ith microoperation is
executed.

For the purpose of clearness hereinafter we assume
that microoperations are executed sequentially, i.e.,
τ1 = 1, …, τn = n. This assumption does not restrict the
generality. In this case contract of an operation
consisting of n microoperations is given by the
formula:

Contract = 〈pre, {posti}i=1,n〉.
Previously we have considered operations in which
cycles when microoperations are executed were
statically fixed. Some units of microprocessors are
more complicated. In general case there are
dependencies between operations. So, execution of an
operation is suspended until all necessary data is
prepared and all required resources are deallocated by
the previous operations. Requirements on such
operations are specified with the help of the following
contracts:

Contract = 〈pre, {(prei, posti)}i=1,n〉,
where pre is the precondition of operation, prei is the
guard condition of the ith microoperation, and posti is
the postcondition of the ith microoperation. Guard
condition is a negation of interlock condition, i.e.,
microoperation is interlocked, if and only if the
corresponding guard condition is false.

3. Verification of Microprocessor Units

In this section we consider how cycle-accurate contract
specifications can be applied for simulation-based
verification of microprocessor units.

3.1. Checking Correspondence between
Specification and Implementation

For operation x we introduce the following
notation. The precondition of the operation is denoted
as pre(x); the guard condition of the ith microoperation
is denoted as pre(x, i); the postcondition of the ith
microoperation is denoted as post(x, i); and, finally, the
number of microoperations in the operation is denoted
as L(x).

Suppose that at some moment of time the unit
under verification performs m operations x1, …, xm
(without interlocks) that have been supplied for
execution τ1, …, τm cycles earlier, respectively. Let at
the moments when the operations were supplied, the
preconditions pre(x1), …, pre(xm) have been fulfilled.
Then, to verify correctness of behavior at the given
moment of time it is required to check satisfiability of
the predicate called test oracle:

Oracle({(xi, τi)}i=1,m) = ∧ post(xi, τi).
Test oracle organization is illustrated in Fig. 1. In the
first cycle of simulation operation A is started. Then,
one cycle later operation B is supplied for execution.
At the end of the second cycle both postcondition of
microoperation A2 and postcondition of microoperation
B1 should be fulfilled.

Fig 1. Execution of two operations.

To verify operations with interlocks, testbench
should keep track which microoperations are finished
and check corresponding postconditions. As it was
said before, a special mechanism, called temporal
composition of contracts, is used for this purpose.
Formal description of the mechanism can be found in
paper [4]. General idea is the following. Contract
specifications of a unit are interpreted as extended
finite state machine (EFSM) [4]. State of the EFSM is
a set of pairs (x, l), where x is an identifier of operation
(stimulus), and l is the number of microoperation
(stage). Suppose that at some moment of time state of
EFSM is π = {(xi, li)}i=1,m and testbench is starting
execution of operation x (guard condition and
postcondition of the operation are fulfilled). Then, the
state is changed in the following way:

{(x, 1)} ∪ (1)
π’ = {(xi, li) | pre(xi, li) = false} ∪ (2)

{(xi, li + 1) | pre(xi, li) = true ∧ li < L(xi)} (3).

Intuitive significance of this formula is quite simple:
new pair (x, 1) is added to the state (1); if
microoperation is interlocked, then its stage is not
changed (2); if microoperation is not interlocked (3),
then its stage is increased. Test oracle for the transition
is calculated as the conjunction of postconditions
associated with executed microoperations:

Oracle(π) = ∧ {post(xi, li) | pre(xi, li) = true}.

3.2. Test Coverage Definition

In the suggested method test coverage for a unit is
described with the help of test situations and
dependencies. Test situation is a predicate that
constrains arguments of an operation and a state of a
unit. Test situation describes event that is interesting
for testing (exception, cache miss, etc.). Dependency
restricts arguments for a pair of operations. Usually
dependencies have an influence on operation
interlocks.

We use constructive definition of test coverage that
allows testbench to automatically construct arguments
of operations during test sequence generation: test
situations and dependencies are supplied with special
functions called constructors that totally or partially
construct arguments of the corresponding operations.
When applying operation for a given test situation and
a given set of dependencies, testbench calculates
arguments of the operation as a composition of values
generated by corresponding constructors (test situation
and dependencies should not contradict each other).

We develop constructors manually, but they can be
generated automatically using constraint solving
techniques. Currently we are doing research and
development in this field and planning to implements a
prototype of the test generation tool in the short run.

3.3. Test Sequence Generation

When test coverage of a unit is specified, the goal
of the unit verification can be defined formally as
covering all feasible generalized states of the unit
EFSM. Generalized state is a set of elements
(x[s, d], l), where x is a stimulus, s is a test situation, d
is a set of dependencies that connect x with previously
launched operations (which are also presented in this
state), and l is a stage. Stimulus x labeled by s and d is
called generalized stimulus.

To achieve the goal of verification we use
irredundant algorithms for traversing directed graphs
[5]. Usually generalized state graphs are deterministic
(assume that dependencies determine interlocks) and
strongly connected, therefore we can apply such kind
of algorithms. The important feature of irredundant
algorithms is that they operate with graphs defined
implicitly by function that for each node calculates a
set of possible stimuli. Such approach goes very well
with contract specifications (see Fig. 2).

Fig 2. Generalized state graph.

It should be noticed that precondition satisfiability
must be determined on the base of generalized state.
To meet this requirement verification engineer ought to
manually supplement state with additional information,
if it is needed.

4. Related Work

There are a lot of articles dedicated to methods of
microprocessor verification. Many researchers come to
a consensus that model-based test generation is the
right direction for simulation-based verification of
microprocessors. The main question is which models
and notations should be used.

Existing approaches utilize explicit cycle-accurate
models to generate test sequences, e.g., Ur et al. [6]
and Mishra et al. [7-10] use SMV models; Ho et al.
[11] utilize Synchronous Murϕ. The main differences
between approaches are concentrated in the following
methods:

• method of constructing a model:
o manual development [6];
o automatic derivation from RTL [11];
o automatic derivation from specifications [8,*1].

• method of test sequence generation:
o state graph traversal techniques [6,11];
o model checking techniques [7-10,*].

It should be emphasized that manual development
of a model for test sequence generation is error-prone,
while automatic derivation from RTL description does

1 * = this paper.

not scale well on complex designs. We think that the
most perspective method of model construction is
automatic extraction from formal specifications and
test coverage definition.

Model checking techniques are not intended for
full-scale functional verification. They are aimed to
verify relatively small number of properties and to
generate counter-examples if properties are violated.
The most usable way of test sequence generation based
on state graph traversal.

In the suggested method model for test sequence
generation (generalized state graph) is automatically
derived from specifications and test coverage
definition; test sequence generation is based on state
graph traversal techniques. The distinction feature of
the approach is that it utilizes implicit (declarative)
specifications for description of behavior and
irredundant algorithms for state graph traversal. We
believe that use of implicit models increases the
scalability of the approach.

5. Case Studies

The suggested approach was applied to translation
lookaside buffer (TLB) and to L2 cache of the
industrial MIPS64-compatible microprocessor [12].

The RTL model of the TLB is implemented in
Verilog. The source code of the model (without
libraries) makes up to 3.5 KLOC. All functional
requirements (about 100) have been formalized by
cycle-accurate contract specifications; tests have been
developed according to the suggested method. The
volume of specifications and tests is about 3.5 KLOC
in SeC language, which is a specification extension of
C. The total labor costs of testbench development are
about 2.5 man-months. We have found more than 10
errors in the TLB implementation including very
critical ones.

The RTL model of the L2 cache is also developed
in Verilog. The volume of the unit source code is about
3.0 KLOC. In this project we have specified about 170
functional requirements. The volume of specifications
and tests makes up to 4.7 KLOC in SeC. The labor
costs of testbench development are about 4.0 man-
months. Testbench has discovered 3 errors.

6. Conclusion

The need of automated testbench development for
microprocessor units is widely recognized. The paper
described the method of coverage-directed verification
of microprocessor units that is based on cycle-accurate
contract specifications. We have successfully applied
our approach to several units of the industrial MIPS64-

compatible microprocessor. Critical bugs were found
in the implementation of the units that had not been
discovered earlier at the chip level.

We consider the method to be very useful for
functional verification of microprocessors at the unit-
level. Now we are planning to generalize our approach
for branching pipelines, pipelines with cycles, etc. The
other thing that we are going to do is the development
of tools that improve test result analysis and simplify
design of specifications and tests.

7. References

[1] W. Lam. Hardware Design Verification: Simulation and
Formal Method-Based Approaches. Prentice Hall, 2005.
[2] B. Bentley. “Validating the Intel Pentium 4
Microprocessor”. In Proc. of Design Automation
Conference, 2001. pp. 244–248.
[3] J.M. Ludden et al. “Functional Verification of the
POWER4 Microprocessor and POWER4 Multiprocessor
Systems”. IBM Journal of Research and Development,
Volume 46, Number 1, 2002. pp.53–76.
[4] A. Kamkin. “Testbench Automation for Pipelined
Designs Based on Contract Specifications”. In Proc. of East-
West Design & Test Symposium, 2007. pp. 348–353.
[5] I. Bourdonov, A. Kossatchev, V. Kuliamin. “Irredundant
Algorithms for Traversing Directed Graphs: The
Deterministic Case”. Programming and Computer Software,
Volume 29, Number 5, 2003. pp. 245–258.
[6] S. Ur and Y. Yadin. “Micro Architecture Coverage
Directed Generation of Test Programs”. In Proc. of Design
and Automation Conference, 1999. pp. 175–180.
[7] P. Mishra and N. Dutt. “Automatic Functional Test
Program Generation for Pipelined Processors using Model
Checking”. In Proc. of High-Level Design Validation and
Test Workshop, 2002. pp. 99–103.
[8] P. Mishra and N. Dutt. “Architecture Description
Language Driven Functional Test Program Generation for
Microprocessors using SMV”. CECS Technical Report 02-
26, September 13, 2002. 18 p.
[9] P. Mishra and N. Dutt. “Graph-Based Functional Test
Program Generation for Pipelined Processors”. In Proc. of
Design, Automation and Test in Europe, 2004. pp. 182–187.
[10] P. Mishra and N. Dutt. “Functional Coverage Driven
Test Generation for Validation of Pipelined Processors”. In
Proc of Design, Automation and Test in Europe, 2005.
Volume 2, pp. 678–683.
[11] R. Ho, C. Yang, M. Horowitz, and D. Dill.
“Architecture Validation for Processors”. In Proc. of
International Symposium on Computer Architecture, 1995.
pp. 404–413.
[12] MIPS64™ Architecture For Programmers. Revision
2.0. MIPS Tecnologies Inc., June 9, 2003.

