
Contract Specification of Pipelined Designs:
Application to Testbench Automation

Alexander Kamkin
Software Engineering Department

Institute for System Programming of Russian Academy of Sciences
25, B. Kommunisticheskaya, Moscow, 109004, Russia

E-mail: kamkin@ispras.ru

Abstract— In this paper we introduce a novel approach to
formal specification of pipelined designs. The approach is based
on contract specifications of pipe stages extended by a mechanism
of temporal binding. Contract specifications describe the pipeline
behavior in the form of preconditions and postconditions of
pipe stages, while temporal binding combines specifications of
separated stages into a co-operative specification. Such specifica-
tions are suitable for automatic generation of test oracles which
check design correctness. The approach was integrated into the
CTESK test development tool from the UniTESK toolkit. The
methodology was successfully applied to several modules of the
industrial microprocessor.

I. INTRODUCTION

Modern world can not be imagined without huge variety
of electronic devices. Mobile phones, digital cameras and
briefcase computers have become the integral parts of human
life. Special devices manage household appliances, control
airplanes and space satellites, regulate medical systems of life
support. Practically all of such systems are based on digital
semiconductor hardware.

To make sure that hardware works correctly, i.e. meets
all functional requirements stipulated in documentation, func-
tional testing is usually used [1]. Requirements on thor-
oughness of hardware design testing are very strong. This
is not only connected with the fact that hardware underlies
all computer systems including safety-critical ones. Powerful
influence on requirements is also exerted by economic forces.

In contrast to software, where an error correction (not error
consequencies) does not cost anything, a post-silicon error in
hardware can cause reproduction of all erroneous devices. The
well-known FDIV bug in Pentium microprocessor consisted
in incorrect division of some floating-point numbers cost Intel
about $475 millions [2]. Time constraints of testing are also
very strong. It is crucially important to develop system in time
while it is much in demand.

Currently, the high-level hardware description languages
(HDLs) are widely used in electronic design. The HDLs
greatly speed up a development process by automated trans-
lation of the register-transfer-level (RTL) description into the
gate-level netlist. However they can not guarantee that system
developed is faultless. Thus, a testbench development does
remain an acute and very important task.

State-of-the-art complexity of hardware designs does not
allow to develop suitable test suites manually in reasonable

time. The need of automated testbench development technolo-
gies is widely recognized. Development of such technologies
and supporting tools has separated to a special branch of
electronic design automation (EDA) industry which is known
as testbench automation.

The main task of testing is to verify correspondence between
design under test (DUT) behavior and requirements. To have
the ability to do it automatically requirements should be
represented in machine-readable form. Such form of require-
ments representation is usually called formal specifications or
specifications for short.

The article focuses on specification and testing of pipelined
designs. Pipelining is the key implementation technique used
to make fast designs [3]. Generally, pipelining is the way
of system organization whereby multiple operations are over-
lapped in execution. Each step in the pipeline, called pipe
stage, completes a part of an operation; different steps are
completing different parts of different operations in parallel.

Pipelining yields a reduction in the average execution time
per operation, but it also introduces additional problems and
new sources of errors. For example, two different operations
can access the same resource on the same clock cycle. Such
errors are called control logic bugs. According to statistics
given in [4], 93.5% of MIPS R4000PC/SC errata (revision
2.2) [5] are control logic bugs.

We propose an approach applicable to complex industrial
pipelined designs. The approach is based on contract specifi-
cations of pipe stages extended by a mechanism of temporal
binding. Contract specifications describe the pipeline behavior
in the form of preconditions and postconditions of pipe stages,
while temporal binding combines specifications of separated
stages into a co-operative specification.

The rest of the paper is organized as follows. The second
section contains base definitions. In the third section contract
specification of pipeline is considered. The fourth section
comprises a short review of the UniTESK technology and
the CTESK test development tool. In the fifth section related
work is outlined. The sixth section is a case study. Finally, the
seventh section concludes the paper.

II. BASE DEFINITIONS

The classical model of finite state machine (FSM) extended
with context variables, parameters, predicates, and functions

defined over context variables and parameters is known as
extended automaton or extended finite state machine (EFSM),
if automaton has a finite set of states and a finite transition
relation [6]. Henceforward we will use the EFSM abbreviation
even if a set of states or a transition relation are infinite.

The EFSM paradigm is widely used in computer science to
model different kinds of software and hardware systems, such
as real-time control systems, telecommunication protocols, etc.
The FSM underlying an EFSM is said to model the control
flow of a system, while context variables, parameters, and
functions reflect its data flows. In this paper we use EFSM
to model pipelined designs.

Hereinafter we will unify context variables and parameters
of EFSM by general term variables. In the following defini-
tions we suppose that each EFSM variable � is associated with
a set of possible values

���
, which is called domain of variable� . If � is a set of variables, then

���
denotes a set of possible

valuations of variables from set � .
Definition 1: An EFSM is a 6-tuple �	��
��
�������
���
���
���� ,

where:� � is a set of states;� � is a set of context variables;� ����� is a set of input and output parameters;� � is a set of stimuli;
Each stimulus �!"� is parameterized by input parame-
ters #%$'&)(*� ; let

� & be a set of #+$'& valuations.� � is a set of reactions;
Each reaction ,�!-� is parameterized by output param-
eters .0/21435(6� ; let

� 3 be a set of .0/2143 valuations.� � is a transition relation.
Two subsets of � are specified for each transition 17!"� :

– /98;:;<=(*�
is a set of context variables used by the transition;

– >?:A@0<�(*�
is a set of context variables defined by the transition.

Transition 1 is a 7-tuple B%8 <
� <
�, <
�C <
�D <
�E <
�8;F<�G , where:

– 8 < !H�
is an initial state of the transition;

– CI<7J � &LK �LMAN4OQP=RTS 1QU0/9:?
�@9VXW	8;:?Y
is a guard condition of the transition;

– DZ<7J � &LK �LMAN4OQP7R[� 3
is a reaction function of the transition;

– E\<7J � &LK �LMAN4OQP=R[��]^O4_�P
is a context update function of the transition;

– 8`F< !H�
is a final state of the transition.

Definition 2: A context variables valuation ab! �"�
is

called a context of EFSM.
Definition 3: A pair B	8?
�a G !c� K � � is called a configu-

ration of EFSM.
Definition 4: A predicate deUA: N�f & Bgdh
�a G , which is defined

by the formula i <+jIk�<mlnjporq N P lts N�u & P lts &Av CX<^Bgd'
�a G , is called a
precondition of stimulus in state 8 .

Definition 5: A pair hBwd G , where x!6� and dy! � & , is
called an initialized stimulus of EFSM.

Definition 6: A pair ,zBtU G , where ,{!|� and U6! � 3 is
called an initialized reaction of EFSM.

Definition 7: A triple 1\Bwd'
�U G , where 15!}� , d~! � & P , andU�! � 3 P is called an initialized transition of EFSM.
Definition 8: An initialized transition 1\Bgdh
�U G is said to be

enabled for configuration B	8?
�a G , if 8;<���8 , CI<^Bwd'
�a G ��1QU0/2: ,
and DZ<^Bwd'
�a G �6U .

Denote the set of initialized stimuli, the set of initialized
reactions, and the set of initialized transitions by � , � , and� respectively.

The EFSM operates as follows. It receives an initialized
stimulus and computes the set of enabled initialized transi-
tions. A single transition nondeterministically chosen from the
computed set fires. Executing this transition EFSM produces
initialized reaction, updates context, and moves from the
initial state of the transition to the final state. The EFSM
usually starts from a designated configuration, which is called
the initial configuration. A pair of an EFSM and an initial
configuration is called an initialized EFSM.

III. CONTRACT SPECIFICATION OF PIPELINE

Intuitively, pipeline of length � is the way of system
organization where execution of an operation consists of �
successive stages, and it is possible to feed a next operation
when the first stage of the previous one is complete. Let us
formalize this idea.

Definition 9: A pair B r
�W G ! � K SI�
`������
���Y is called a
stimulus state.

Definition 10: A finite set of stimuli states
S B 9��
�Wn� G Y;�� sh� is

called a control state; the empty set of stimuli states is called
the initial control state.

Denote the set of stimuli processing states and the set of

control states by ��� and �r�]^O4_��� �7� respectively.
Definition 11: A contract specification of pipeline of length� is 6-tuple �%�
�a0�I
�������
���� S;� Y?
^��� S0� Y?
���� , where:� � is a set of context variables;� a � ! � � is an initial context;� ����� is a set of input and output parameters;� ��� S`� Y is a set of stimuli;

Each stimulus x!y��� S;� Y is parameterized by input
parameters #+$ & (�� ; let

� & be a set of #+$ & valuations.
Besides the set of input parameters, the following at-
tributes are specified for stimulus :

– /z8`:0&�(6�
is a set of context variables used by the stimulus;

– C & Jp� � R�S 1QU;/9:I
�@9VXW	8;:?Y
is a guard condition of the stimulus, such that:� C & B+ G �61QU0/9:I
C & Bt¡ � G¢ C & Bm¡2£ G , if ¡¤£¥(~¡ �§¦

– deUA:0&LJ � & K � MAN4O�¨ R©S 1QU0/9:I
�@9VXW	8;:?Y
is a precondition of the stimulus.

Set of stimuli includes special stimulus
�

, which is called
clock stimulus, such that:

– #+$«ª5�¬ ;

2

– /98;:0ª5�¬ ;
– CXª®¯1QU0/2: ;
– deUA:0ª®61QU0/9: .� �°� S;� Y is a set of stages;

Each stage ± is parameterized by output parameters.0/214²¥(*� ; let
� ² be a set of .0/¤1�² valuations.

Besides the set of output parameters, the following at-
tributes are specified for stage ± :

– /98;: ² (��
is a set of context variables used by the stage;

– >?:A@ ² (6�
is a set of context variables defined by the stage;

– C ² Jp� � R�S 1QU;/9:I
�@9VXW	8;:?Y
is a guard condition of the stage, such that:� C ² B% G �*1QU0/2:I
C ² Bm¡ � G�¢ C ² Bm¡2£ G , if ¡¤£³(�¡ �§¦

– d¤.§8`14²5J � MAN4O4´ K � ² K �]^O4_�´ R�S 1QU;/9:I
�@9VXW	8;:?Y
is a postcondition of the stage.

Set of stages includes special stage
�
, which is called

empty stage, such that:

– .0/¤1�µ�x ;
– /98;:Aµ¶�¬ ;
– >?:A@§µ�¬ ;
– C�µ¯1QU0/2: ;
– d¤.§8`1�µ61QU0/9: .� �}J«��� S`� Y R B+�*� S0� Y G � is a mapping of stimuli to

stages, such that:

– �2B � G �{B �
·������
 � G ;
– CX¸^¹	º &;» B S B '
�W G Y G �*1QU0/9: , for all B r
�W G ! � � .

Definition 12: A pair ±¤BtU G , where ±°!y� and U¼! � ² , is
called an initialized stage of contract specification.

If ,�(¯� , .0/21 3 �¬½ ² jp3 .0/¤14² , and U�! ��¾ M <m¿ , then ,zBtU G]^O4_�S ±2BmUZÀ ¾ M < ´ G ÀA±L!�,¤Y .
A. Interpretation of Contract Specification

Contract specification of pipeline can be interpreted as a
special case EFSM. States of the EFSM are control states
of the contract specification; reactions of the EFSM are sets
of the pipe stages executing simultaneously. Consider some
definitions to begin with.

Definition 13: A stimulus Á!��}� S;� Y is said to be enabled
on stage W�! S?�
·������
���Y in control state ¡-!���� , if C�¸^¹	º &;» Bm¡ G �1QU;/9: ; otherwise, it is said to be locked.

Definition 14: A set of stimuli states :;$«V�Â^Wt:0>2Bm¡ G]^O4_�S B h
�W G !{¡ÃÀ�C�¸^¹	º &`» Bt¡ G �Ä1QU0/2:?Y is called a set of enabled
stimuli in control state ¡¼!�� � .

Definition 15: A set of stimuli states W	.AÅ·Æ�:0>¤Bt¡ G]^O�_�Ç¡}È:`$«V�Â^W	:0>¤Bt¡ G is called a set of locked stimuli in control state¡-!H� � .
To interpret a contract specification of pipeline we use two

special functions: a pipeline shift operator to calculate a next
control state, and a temporal binding operator to calculate a
set of executing stages.

Definition 16: The pipeline shift operator is a functionÉ JeB �Ã� S;� Y G K �r� R �r�
that for each pair B '
�¡ G !¼B ��� S;� Y G K � � possesses the value É ¡ which is a union of the following sets:� W	.AÅ·Æ�:0>2Bm¡ G ;� S B h
�WeÊ � G À�B '
�W G !�:;$«V�Â^W	:;>2Bm¡ GzË WrÌ*��Y ;� S B h
 � G Y , if �Í� � .

Definition 17: The temporal binding operator is a functionÎ JI� � R �pÏ
that for each ¡¬!*� � possesses the value

Î Bm¡ G]^O4_� S �IÐ4Bm G ÀB r
�W G !�:;$«V�Â^W	:;>2Bm¡ G Y�È S;� Y?�
Definition 18: A set of stages

S ± �
·������
�± � Y is said to be
conflict, if at least one of the following conditions is satisfied
for some

�¥Ñ #�Í�cÒ Ñ $:� .0/21 ²�Ó9Ô .0/¤1 ²�Õ Í�x — conflict of reactions;� /z8;: ²�Ó¤Ô >I:A@ ²4Õ Í�y — read/write conflict;� >I:A@A² Ó9Ô >?:A@A² Õ Í�x — write/write conflict.

Otherwise, it is said to be consistent.
Definition 19: A control state ¡ is said to be consistent, if�IÐ�Ö0Bm � G Í�×�?Ð�Ø§Bm 2£ G , for all different B 2Ð Ó
�Wn� G !{¡ , such that� Ð Ó Bm � G Í� � , and

Î Bt¡ G is consistent.
Definition 20: A stimulus is said to be conflict for a set of

stages
S ± �
·������
�± � Y , if /z8;: &2Ô >?:A@ ²�Ó Í�y for some

�¥Ñ # Ñ $.
Definition 21: A stimulus is said to be conflict for a

control state ¡�!�� � , if is conflict for
Î Bm¡ G .

Definition 22: A contract specification is said to be con-
sistent, if for all �! ��� S`� Y and ¡�!Ù� � the following
conditions are satisfied:�

if is conflict for ¡ , then C & Bm¡ G �¬@9VXW	8;: ;�
if ¡ is consistent and C & Bm¡ G �Ú1QU;/9: , then É ¡ is
consistent.

Let Û��{�	�=
�aA�?
��7����
��Ù� S`� YI
��-� S;� Y?
��X� be a consistent
contract specification of pipeline, then it can be interpreted as
the EFSM ÜÝ�Þ�	�¶
��=
`Bm¡¤�I
�a0� G
��5�-��
��Þ� S`� YI
��ß� S`à YI
����
with clock stimulus

�
and empty reaction

à
, which is organized

as follows:� ���y� � :
the states of Ü are the control states of Û ;� ¡ � �¬ :
the initial state is the initial control state;� �á�¬� Ï :
the reactions of Ü are the sets of Û stages;� à �¬ :
the empty reaction is the empty set of stages;�
For all ¡¯!c� and hBwd G ! ��� S;� Y , such that C & Bt¡ G �1QU0/9: , transition relation � contains all initialized transi-
tions 1�áBt¡¶
� h
�,9
4C�
�D'
�EA
�¡«F G of the following kind:

– /z8`: < �*/z8`:0&��-B ½ ² j?â º�ã l » /z8;:;² G ;
– >I:0@A<��x½ ² j?â º�ã lw» >I:A@ ² ;
– ¡«F2�¯ hBwd G É ¡ ;
– ,L� Î Bt¡«F G ;
– C¶Bgd'
�a G �}deUA: & Bgdh
�a«À MAN4O ¨ G ;

3

– the value of reaction function D�! � B ½ ² j?â º�ã l » .0/21 ² G
and the value of context update function Eä! ��]^O4_�P
for all a~! �ä� , such that d¤U0: & Bwd'
�a'À MAN4O ¨ G ��1QU;/9: ,
satisfy the predicate:å ã f & B	aZ
�D'
�E G � æ² j?â º�ã l » d¤.§8`1 ² B	a'À

MAN4O ´
�DhÀ ¾ M < ´
�EZÀ]^O4_�P G

which is called the test oracle of stimulus in
control state ¡ .

B. Correspondence between Specification and Implementation

An important concept that is generally used in func-
tional testing is a correspondence between specification and
implementation. Consider the contract specification Û ��	�®ç'
�aeç�
��Iç����¥çh
��-ç�� S`� ç«Y?
^��ç�� S;� çzY?
���çe� and the initial-
ized EFSM ÜÙ�|�	�èp
��5è?
`B	8;è�
�a�è��G
��?è����³èI
���è� S`� èpY?
��5è=�S·à èAYI
���è;� .

Definition 23: A surjective function éêç JZ�5ç� R �¶è , such
that é¶êç Bm¡'ç� G �¯8;è� , is called a state correspondence function.

Definition 24: A function éê� J � ç � S;� ç Y R � è � S`� è Y ,
such that é¶ê� B ç G � � è , iff ç � � ç , is called a stimulus
correspondence function.

Definition 25: A bijective function éëì J � è � S`à è Y R� Ï2í , such that é¶ëì B , è G �ß , iff , è � à è , is called a reaction
correspondence function.

Definition 26: A function éë� J � è� R � ç� , such thaté�ë� B	a�è� G �¯aeç� , is called a context correspondence function.
Definition 27: An initial EFSM Ü is said to be corre-

sponding to a contract specification Û for a given set of
correspondence functions �téêç
�é¶ê�
�é¶ëì
�é�ë� � , if for all ¡hçH!� ç� , ç Bwd ç G ! � ç � S;� ç Y and a è ! � è� if C &0î Bm¡ ç G �¯1QU;/9: ,
then 2è�!�#%$z#+1\B%8`è G , and if deUA: &Aî Bgd9ç«
�aZç G �ï1QU;/9: , thendeUA: N í f & í Bgd¤è?
�aZè G �©1QU0/9: , where 80èy�Té¶êç Bm¡'ç G , ¤èXBgd2è G �é�ê� Bm 2çhBgd9ç G�G , aZç��©é�ë� B	a�è G . At that rate for each initial-
ized transition 14èXBwd¤è?
�UAè G !Ý#+$z#+1\B	8;è§
� ¤è G , which is enabled
in configuration B	80è?
�a�è G , 8;F< í �Té¶êç Bm¡«Fðç G , é¶ëì�Bm, < í BmUAè G�G �Î Bm¡«Fðç G BtUAç G , and

å ã î f &0î B%aZçh
�U§çh
�a�Fðç G �Ä1QU0/2: , where ¡'Fðçx� 2çrBgd9ç G É ¡'ç and aZFðç��¯é¶ë� B	E < í B	a�è G�G .
The definition above gives the following scheme for check-

ing correspondence between specification and implementation
during a testing:ñnò9óZô4õXóXö'÷Äñtø�ô+õXóù ö ;

if(ú\û³üý}þzÿó ñnò ó ö��®õ ó üý}þ��� ñmõ û öQö Error();
while(� isTestComplete()) �� ó ñ	� ó ö«÷ getNextStimulus();

if((
�� î ñnò ó ö������� � î ñ	� ó ô4õ ó öQö �� û ñ	� û ö«÷ þ���� ñ � ó ñ	� ó öQö ;
applyStimulus(� û ñ	� û ö);� û ñ�� û ö«÷ waitForReaction();� óeñ��0óXö«÷ þ �� ñ � û ñ�� û öQö ;õ�� ó ÷ þ �� ñmõ û ö ;ò ó ÷ � ó ñ	� ó ö���ò ó ;
if(ú û üý}þ ÿó ñnò9óIö) Error();
if(� ó üý�� ñnò ó ö) Error();

if(�! #" î%$ � î ñmõ ó ô&� ó ôQõ�� ó ö) Error();'
'

Sufficiently often the implementation state 8Aè is hidden. Fur-
thermore, the function of state correspondence é=êç is actually
undefined. Thus, checks of kind 80è��Äé¶êç Bt¡'ç G are usually
omitted. The same is true for comparison ,¤ç¼Í� Î Bm¡'ç G , because
one can consider reactions as the parts of the context. So, the
only check that is generally done by testbench in each step of
testing is

å ã î f & î B%aZç«
�U§ç'
�a�Fðç G �61QU0/9: .
IV. UNITESK TECHNOLOGY

The UniTESK technology [7], [8] was developed at the
Institute for System Programming of Russian Academy of
Sciences [9]. The original purpose of the technology is the
development of high-quality functional tests for software sys-
tems. The UniTESK technology and supporting tools have
been successfully applied for testing different kinds of soft-
ware (operating systems, telecommunication protocols, real-
time systems, etc.). A key moment in the successful use of the
UniTESK technology is the flexible and scalable test system
architecture, which allows to adapt the technology to various
classes of systems [8].

The main idea of UniTESK is separating the test sequence
generation from the DUT behavior specification. On the one
hand, it uses FSM traversal techniques to generate test se-
quences; on the other hand, it utilizes formal specifications
in the form of preconditions and postconditions of operations
to describe the DUT behavior. The approach has distinctive
feature that it does not operate with explicit FSM models. In
contrast, it works with implicit ones being described by means
of FSM state calculation function and set of possible stimuli
for each of the reachable states.

A. UniTESK Test System Architecture

UniTESK test system architecture has been developed as a
result of many years experiments on specification-based testing
of the industrial software from different fields and of different
levels of complexity [8]. These experiments have allowed to
create the flexible and scalable test system architecture based
on the following division of the testing task into subtasks:�

Generation of a test sequence to achieve the functional
coverage needed;�
Creation of a single stimulus within the test sequence;�
Building a connection between the test system and DUT;�
Verification of the DUT behavior in response to a single
stimulus.

Special test system components are provided by UniTESK
technology to solve these subtasks. Their interactions are
shown on Fig. 1.

Test engine is a library component of the UniTESK test
system. Test engine and test action iterator are intended for
test sequence generation. Test engine is based on an FSM
traversal algorithm.

4

UniTESK Test System

Test Engine

Mediator

Test Oracle
Test Action

Iterator

Test
Trace

ReportsDUT

Fig. 1. UniTESK test system architecture.

Test action iterator works under the test engine control. It
calculates current FSM state, iterates corresponding stimuli,
and applies them. Test action iterator is automatically gener-
ated from the high-level test scenario description.

Test oracle verifies the DUT behavior in response to a
single stimulus. It is automatically generated from the formal
specifications.

Mediator connects formal specifications and DUT imple-
mentation. It makes some transformations of the stimuli and
reactions and also synchronizes the specification state with the
implementation one.

Test trace shows the events happening during the testing.
It is used by the UniTESK supporting tools to automatically
generate different reports that help in the test results analysis.

B. CTESK Test Development Tool

CTESK test development tool is an implementation of the
UniTESK conception for the C programming language. It uses
SeC (specification extention of C) language to develop test
system components. SeC language provides test developers
with special functions:�

Specification functions – to specify DUT operations and
to define functional coverage structure;�
Mediator functions – to connect specification functions
with corresponding stimuli;�
Function of FSM state calculation – to calculate FSM
state on the base of the specification state;�
Scenario functions – to define a set of stimuli to be
applied in each of the reachable states.

CTESK tool has been used for testing Verilog HDL and
SystemC designs of hardware. The detailed information on
this subject is presented in [10] and [11].

C. Specification of Pipelined Designs

We have adapted the CTESK tool for contract specification
of pipeline designs. To illustrate basic ideas of the suggested
approach let us consider an example of a 3-stages floating-
point adder. The adder is intended for adding two normalized
single-precision floating-point numbers (zero values are also
permitted) [12]. The pipeline of the unit consists of 3 stages:
(1) alignment of exponents, (2) addition of fractions, and (3)
normalization of result.

The first step of operation specification is the definition
of so-called operation descriptor type that describes the cur-
rent state of operation execution. This type usually contains
operands of the operation and all kinds of temporal values
calculated on one stage to be used on successive stages.

// Descriptor of ADD operation
specification typedef struct ADDDescriptorT �

// Operation operands
bool op1 sign;
uint8 t op1 exponent;
uint32 t op1 fraction;
...'

ADDDescriptorT;

The specification function of the operation contains operation
precondition.

// Specification function of ADD operation
specification void ADD spec(SingleT op1, SingleT op2) �

// Operation precondition
pre �

return (isZero SingleT(op1) (isNormalized SingleT(op1))
&& (isZero SingleT(op2) (isNormalized SingleT(op2));'

...'

For each stage of the operation a special function is
developed to set forth stage requirements. Let us consider
specification of the following requirement: ”If operands
have different exponents, then fraction of the operand with
the smaller exponent is shifted to the right (the number of
positions that the bits in the fraction are to be shifted is
the difference between exponents). If there is a unit among
the shifted bits, then output inexact align is set to high;
otherwise, it is set to low.”

// Specification of the ALIGNMENT stage
reaction ADDDescriptorT* ADD align spec(void) �

AdderUnitT *adder unit = getAdderUnit();
ADDDescriptorT *add = ADD align spec;
post �

if(add-) op1 exponent) add-) op2 exponent) �
int shift = add-) op1 exponent - add-) op2 exponent;
return adder unit-) inexact align ==

(add-) op2 fraction & mask(shift)) != 0;'
if(add-) op1 exponent * add-) op2 exponent) �

int shift = add-) op2 exponent - add-) op1 exponent;
return adder unit-) inexact align ==

(add-) op1 fraction & mask(shift)) != 0;'
...'

'

5

In the code above adder unit denotes a variable that
stores specification representation of the current DUT state.

V. RELATED WORK

Functional testing of pipelined designs is mostly researched
in the area of microprocessor design. The good many articles
are dedicated to the methods of test generation for pipelined
microprocessors. Many researchers come to a consensus that
specification-based testing is the right direction for functional
testing of hardware designs. The main question is which
models and notations should be used.

The important step toward the specification-based testing of
pipelined microprocessors was made by Ho et al. [4]. They
suggest deriving pipeline control logic as FSM, analyzing
reachable states of the FSM, and traversing the FSM to
produce test vectors. Unfortunately, this methodology is not
applicable to complex industrial designs [13].

Existing methods of test generation utilize explicit cycle-
accurate specifications, e.g. Mishra et al. [14], [15], [16], [17]
and Ur et al. [13] use explicit SMV specifications to describe
DUT behavior and to generate test programs. Two modern
directions of test generation are:�

test generation using FSM traversal techniques (Ho et
al. [4], Ur et al. [13]);�
test generation using model checking techniques (Mishra
et al. [14], [15], [16], [17]).

We suppose that model checking does not scale well on
complex industrial designs. However some techniques, like
bounded model checking (BMC) and properties decompo-
sition, allow to achieve suitable efficiency of test genera-
tion [18], [19].

We use FSM models to generate test sequences, but in
contrast to other methods we use implicit models being
described by means of FSM state calculation function and set
of possible stimuli for each of the reachable states. Transition
relation of the FSM is built on-the-fly during the testing. We
suppose that the use of the implicit models for specification
and testing increases the scalability of the approach.

VI. CASE STUDY

The suggested approach was applied to RTL model of trans-
lation lookaside buffer (TLB) of the industrial microprocessor
with MIPS64 o,+ -compatible architecture [20], [21]. TLB is a
buffer in a microprocessor that is used to increase the speed
of address translation. TLB has a fixed number of entries
containing part of the page table which translates virtual
addresses into physical ones.

The memory of the TLB under test comprises three buffers:
a 4-entries instruction micro TLB (ITLB), a 4-entries data
micro TLB (DTLB), and a large 64-entries joint TLB (JTLB).
The purpose of the micro TLBs is to allow two address
translations to be performed simultaneously – one for an
instruction fetch address (via the ITLB) and one for a data
load/store address (via the DTLB).

TABLE I

TLB REQUIREMENTS PARTITIONING

Operation Multistage Requirements

Read No 7

Write No 9

Probe No 8

Data Address

Translation
Yes 38

Instruction Address

Translation
Yes 37

Total — 99

If a translation is not found in the corresponding micro TLB,
then the JTLB is accessed. Once the translation is retrieved,
it is written back to the micro TLB. To refill micro TLBs
the least-recently-used (LRU) algorithm is used – micro TLBs
always replace the entry which has not been accessed for the
longest amount of time. Thus, micro TLBs contain a subset
of translations that are most-recently-used.

Address translation operations are organized as multistage
pipelined operations. A micro TLB miss sequence has a
penalty of one extra clock cycle. If we have simultaneous
ITLB miss and DTLB miss, the DTLB gets first priority when
accessing the JTLB, and the translation of instruction address
stalls an additional cycle, giving a total penalty of two latency
cycles.

Besides the address translation operations, the TLB under
test implements operations for reading entry from the buffer,
writing entry to the buffer, and probing if the entry exists in
the buffer. The interface of the TLB under test contains about
30 inputs and as many outputs. The RTL model of the TLB is
implemented in Verilog HDL. The source code of the model
makes up to 8 KLOC.

The process of testbench development was organized as
follows. Part of the requirements on the TLB under test
were formulated by the developers, while the others were
derived from the technical documentation. A total number
of the requirements is about a hundred. TLB requirements
partitioning is shown in Table 1.

Requirements on each operation were represented in the
form of preconditions and postconditions of pipe stages. After
that, pipeline shift operator and temporal binding operators
were defined. It should be emphasized that all requirements
were cheaply formalized. The volume of specifications makes
up to 2.5 KLOC in SeC language.

We have found 9 errors in the TLB implementation includ-
ing critical ones. Errors statistics is shown in Table 2. It should
be noted that all errors were found in the multistage operations
and the majority of errors (67%) are connected with the control
logic. The total labor costs of the testbench development make
up to about 2.5 man-months.

6

TABLE II

TLB ERRORS STATISTICS

Type of Errors Number Percent

Datapath Errors 3 33%

Control Logic Errors

(Incorrect State)
5 56%

Control Logic Errors

(Data Hazards)
1 11%

Total 9 100%

VII. CONCLUSION

The need of automated testbench development for complex
pipelined designs is widely recognized. The paper described
the novel approach to formal specification of pipelined de-
signs, which is suitable for testbench automation. The ap-
proach is based on contract specifications of pipe stages ex-
tended by mechanism of temporal binding. Such specifications
are suitable for automatic generation of test oracles which
check DUT correctness. The approach was integrated into the
CTESK test development tool from the UniTESK toolkit. The
methodology was successfully applied to several modules of
the industrial microprocessor.

The roots of the approach are Design-by-Contract
(DbC) [22] and UniTESK [7]. As Ur et al. [23], we believe that
close integration between the software testing and hardware
validation communities can benefit both of them. Actually,
many useful approaches that are developed and proven to be
successful in one domain are rarely used in the other. Of
course, this does not mean that all problems of one community
can be solved by the other, but general problems are the same.

REFERENCES

[1] J. Bergeron. Writing Testbenches: Functional Verification of HDL Models.
Kluwer Academic Publishers, 2000.

[2] B. Beizer. The Pentium Bug – An Industry Watershed. Testing Techniques
Newsletter, TTN Online Edition, September 1995.

[3] D. Patterson and J. Henessy. Computer Organization and Design. 3 -/.
Edition, Morgan Kaufmann, 2005.

[4] R. Ho, C. Yang, M. Horowitz, and D. Dill. Architecture Validation for
Processors. ISCA’95: International Symposium on Computer Architec-
ture, 1995.

[5] MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0. MIPS Tech-
nologies Inc., May 10, 1994.

[6] A. Petrenko, S. Boroday, and R. Groz. Confirming Configurations in
EFSM Testing. IEEE Transactions on Software Engineering, 2004.

[7] http://www.unitesk.com
[8] I. Bourdonov, A. Kossatchev, V. Kuliamin, and A. Petrenko. UniTESK

Test Suite Architecture. FME’02: Formal Methods Europe. LNCS 2391,
Springer-Verlag, 2002.

[9] http://www.ispras.ru
[10] V. Ivannikov, A. Kamkin, V. Kuliamin, and A. Petrenko. Application

of the UniTESK Technology to Functional Testing of Hardware Designs.
Preprint 8, Institute for System Programming of Russian Academy of
Sciences, Moscow, 2005 (in Russian).

[11] A. Kamkin. The UniTESK Approach to Specification-Based Validation
of Hardware Designs. ISoLA’06: The 021 . International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation,
November 2006.

[12] IEEE 754-1985. IEEE Standard for Binary Floating-Point Arithmetic.
NY: IEEE, 1985.

[13] S. Ur and Y. Yadin. Micro Architecture Coverage Directed Generation
of Test Programs. DAC’99: Design and Automation Conference, 1999.

[14] P. Mishra and N. Dutt. Automatic Functional Test Program Generation
for Pipelined Processors using Model Checking. HLDVT’02: The 35476
IEEE International High-Level Design Validation and Test Workshop,
2002.

[15] P. Mishra and N. Dutt. Architecture Description Language Driven
Functional Test Program Generation for Microprocessors using SMV.
CECS Technical Report 02-26, September 13, 2002.

[16] P. Mishra and N. Dutt. Graph-Based Functional Test Program Gener-
ation for Pipelined Processors. DATE’04: Design, Automation and Test
in Europe Conference and Exhibition, 2004.

[17] P. Mishra and N. Dutt. Functional Coverage Driven Test Generation for
Validation of Pipelined Processors. DATE’05: Design, Automation and
Test in Europe, 2005.

[18] H.M. Koo and P. Mishra. Test Generation using SAT-based Bounded
Model Checking for Validation of Pipelined Processors. ACM Great
Lakes Symposium on VLSI, 2006.

[19] H.M. Koo and P. Mishra. Functional Test Generation using Property
Decomposition for Validation of Pipelined Processors. DATE’06: Design,
Automation and Test in Europe, March 2006.

[20] http://www.mips.com/content/Products/Architecture/MIPS64
[21] MIPS64 Architecture For Programmers. Revision 2.0. MIPS Tecnologies

Inc., June 9, 2003.
[22] B. Meyer. Applying ’Design by Contract’. IEEE Computer, vol. 25, #10,

October 1992.
[23] S. Ur and A. Ziv. Cross-Fertilization between Hardware Verification and

Software Testing. SEA’02: Software Engineering and Applications, ACTA
Press, 2002.

7

