Contract Specification of Pipelined Designs

Alexander Kamkin Institute for System Programming of RAS kamkin@ispras.ru

Pipelined Designs

- Operations consist of several stages which are overlapped in execution
- Pipeline organization reduces average execution time per operation
- Pipeline organization introduces additional problems and new sources of errors

Functional Testing

- Functional testing of hardware models consumes 70-80% of the design efforts
- Requirements on thoroughness of hardware models testing are very strong
- Testing can't be done manually due to the size and complexity of designs
- Formal specifications can be used for testbench automation

MIPS R4000 Errata

- Datapath bugs 6.5%
- Control logic bugs 93.5%

R. Ho, C. Yang, M. Horowitz, and D. Dill. "Architecture Validation for Processors"

Suggested Approach

- Contract specifications in the form of preconditions and postconditions describe functionality of pipe stages
- Temporal binding mechanism combines specifications of separated stages into a co-operative specification

Contract Specification of Pipeline

- V set of context variables
- \blacksquare I $\cup O \subseteq V$ input and output parameters
- $X \cup \{\tau\}$ set of stimuli
- $\blacksquare Z \cup \{\epsilon\} set of stages$
- ρ function of operation composition

Stimulus

- in \subseteq I set of input parameters of stimulus
- use ⊆ V\O set of variables used by stimulus
- pre precondition of stimulus

Clock Stimulus (τ)

• $pre_{\tau} \equiv true$

Stage

- $out \subseteq O$ output parameters of stage
- use \subseteq V\O set of variables used by stage
- def \subseteq V\I set of variables defined by stage
- γ guard condition of stage
- post postcondition of stage

Empty Stage (ε)

- $\operatorname{out}_{\varepsilon} = \emptyset$
- USe_{ϵ} = Ø
- $def_{\varepsilon} = \emptyset$
- $\gamma_{\epsilon} \equiv true$
- **post**_{ϵ} = true

Operation Composition

- ρ : $(X \cup \{\tau\}) \rightarrow (Z \cup \{\epsilon\})^{L}$ function of operation composition
- ρ(τ) = (ε, ..., ε) operation of the clock stimulus consists of empty stages

Control State

- Stimulus processing state is a pair (x, s)
 - $\Box x stimulus being processed$
 - □s stage of stimulus processing
- Control state is a set of stimuli processing states {(x_i, s_i)}_{i=1,n}

Initial control state is the empty set of stimuli processing states

Stimulus Processing

- Enabled(π) set of enabled stimuli in state π { (x, s)∈π | guard of ρ_s(x) is true }
- Locked(π) set of locked stimuli in state π { (x, s)∈π | guard of ρ_s(x) is false }

Pipeline Shift Operator

- $(X \cup {\tau}) \times State \rightarrow State pipeline shift operator$
- (x ° π) is the union of the following sets:
 Locked(π)
 { (x, l+1) | (x, l) ∈ Enabled(π) ∧ l < L }
 { (x, 1) }

Temporal Binding Operator

- θ : State \rightarrow Power(Z) temporal binding operator
- $\theta(\pi)$ is the following set of stages: { $\rho_{I}(x) \mid (x, I) \in \text{Enabled}(\pi)$ } \ { ε }

EFSM Interpretation

S = State – states are control states
Y = Power(Z) – reactions are sets of stages
π' = (x ° π) – final state of transition
y = θ(π') – reaction of transition

Semantics of Context Updating

• Test oracle of stimulus x in control state π :

 $\prod_{z \in \theta(x^{\circ} \pi)} \text{post}_z(\text{Use, Def})$

Tool Support

- The approach was integrated into the CTESK test development tool from the UniTESK toolkit
- Pipeline shift operator and temporal binding operator are implemented as library functions

Case Study

Translation Lookaside Buffer (TLB):

- Data address translation
- Instruction address translation
- Reading entry
- Writing entry
- □ Probing entry

Statistics

Implementation

□ ~8 KLOC (Verilog HDL)

~60 inputs and outputs

Specification

□ ~100 requirements

□ ~2.5 KLOC (extension of C language)

Errors

 \Box ~10 errors were found including critical ones

Conclusion

- Approach is suitable for testbench automation
- Approach is integrated into the CTESK test development tool
- Approach has been successfully applied to several units of the industrial microprocessor

Contacts

Institute for System Programming of RAS <u>http://www.ispras.ru</u>

UniTESK Test Development Technology <u>http://www.unitesk.com</u>

Alexander Kamkin <u>kamkin@ispras.ru</u>

Thank You!

Questions?